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The purpose of this research &Sun to study the phenomena .of
multiple quantum processés and to consider possible applications., These
processes involve the interaction of more than a single quantum of radia-
tion with an atomic system gnd are nonlinear in character. An equation
of motion approach is used in the solution of the quantum mechanical
problem, allowing the calculation of the obéervable quantities important
for the radiation processes considered.
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From the results of this research it is thus concluded that a
quantum mechanical system possesses nonlinear as well as linear properties
and that these nonlinear properties may find application, especially in

the sub-millimeter and optical regions where suitable nonlinear elements
do not presently exist.
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CHAPTER I
INTRODUCTION

A. BACKGROURD

In 1955 Gordon, Zeiger and Towneel announced the successful operntion
of the ammonia beam maser. With this pioneering breakthrough the field
of quantum electronics hed its beginning. The achievements in this field
have been many, starting with this first smmonie meser and including the
solid state microwave maser, proposed by Bloembergen2 and successfully
operated by Bcovil, Feher, and Beidel,3 the optical maser proposed by
Bchawlow and Townes and operated by Maiman5 in a solid, and by Java.n6
in a gas, and most recently, the successful operation of a semiconductor
Junction leser.!

The field of quantum electronics differs from its predecessor, classical
electronics, in that it makes use of the internal, quentized <nergy states
of an atom or molecule rather than the translational states of electrons.(l)
In general, efforts to date in the application of these properties have
been concerned with producing amplification end oscillation using the
phenomenon of stimulated emission from en etomic system which is in an
inverted population state.

A study of the interaction of rediation with matter forms the basis
for the analysls of these quantum electrconic systems. BSuch a study must
be quantum mechanical in nature in order to account for the discrete nature
of the atomic system. The phenomenon of emplification by such a guantum
system is e linear process and ~an bc described as & preponderance of stimu-
lated emission over absorption. 8uch a linear process 1s microscopically
describable as the interaction of & single photon with the atonic system
while maéroscopically, a complex susceptibility, independent of the field
strength, may be used. The latter description gives a complex polarization
or magnetization proportional to the applied field.

(1)

The words atom or atomic system are used to mean stom or molecule.

-1 -
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CHAFTER I
IRTRODUCTION

A. BACKGROURD

In 1955 Gordon, Zeiger and Townesl announced the successful operation
of the ammonie beam maser. With this ploneering breakthrough the field
of quantum electronics had its beginning. The achievements in this field
have been many, starting with this first ammonie maser and including the
solid state microwave maser, proposed by Bloembergen2 and successfully
operated by 8covil, Feher, and Se:Lde.'L,3 the optical maser proposed by
Schawlow and Townesl+ and operated by Ma.ima.n5

in a gas, and most recently, the successful operation of e semiconductor
7-9

in & so0lid, and by Javan

Junction laser.

The field of quantum electronics differs from its predecessor, classical
electronics, in that it makes use of the internal, quantized energy states
of an atom or molecule rather then the translational states of electrons.(l)
In general, efforts to date in the application of these properties have
been concerned with producing amplification and oscillation using the
phenomenon of stimulated emission from an stomic system which is in an .
inverted population state.

A study of the interaction of radiation with matter forms the basis
for the analysis of these quantum electronic systems. Such & study must
be quantum mechenical in nature in order to accont for the discrete nature
of the atomic system. The phenomenon of amplification by such a Quantum
system is & linear process and can be described as & preponderance of stimu-
lated emission over absorption. 8Such a linear process is microscopically
describable as the interaction of a single photon with the atomic system
vhile méroscopicully, a complex susceptibility, independent of the fleld
strength, may be used. The latter description gives & complex polarization
or megnetization proportional to the applied field.

(DThe words atom or atomic system are used to mean atom or molecule.

-l -



nlinear Effects
In addition to the linear, single quantum processes important for

maser theory, there exist higher order processes involving, on a microsc. yic
scale, the interaction of more than a single quantum of rediation with the
atomic system. Macroscoplcally these Interactions are found to be described
by a polarization or magnetization which is dependent on quadratic or higher
povwers of the applied radiation field. This nonlinear dependence on the
field makes possible such phenomena as harmonic generation, phrametric
emplification, limiting, modulation, demoduletion, and other fiequency
miking effects. '

The research described in this report is concerned with a study of
these nonlinear phenomena. Because of their nonlinear charecter and quantum
mechanical aspects they will be.called nonlinear quantum effects. They may
be further classified as bulk nonlinear effects since the phenomena are
not connected with either a surfazce or e Junction as, for example, in a
semiconductor diode.

Although nonlinear phenomena have found generel application in
various fields of science and engineering, little, if any, use hes been
made of the bulk nonlinear phenomena considered here. In the region of
the spectrum from dc to microwaves the nonlinear properties of diodes,
varactors, and electron beams have had the most applications. This
results both from the fact that such systems have strong, relatively
frequency-insensitive nonlinearities and that these nonlinearities are
easily describable in terms of familiar concepts.

The bulk nonlinearities of the type consldered here, on the other
hend, are generally smaller im magnitude, frequency-sensitive, and are
described in a less familiar manner than their classical counterparts.

With the host of presently available, strong, nonlinear elements, the
question might be asked as to the purpose of studying these nonlinear
phenomena, Two main reasons can be offered. First of all, such a study
would contribute to a further understanding of phenomena associated with
the interaction of radiation with matter. Of particular interest is the
study of rediation processes where atomic coherence effects, imposed by
strong fields, become important. A second reason comes from the point of
view of applications. Although the nonlinear properties of the presently

-2 -
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used diode, etc., are relatively frequency-independent below the microwave
range, their efficlencies do fall off with increasing frequency sbove this
range. Thus applications in the submillimeter to optical frequency ranges
are marginal, if possible st all.

The bulk nonlineer properties described in this report are found to
depend on the natural transition frequencies of the atom. B8ince atoms
exhibit resonances throughout the electromagnetic spectrum these nonlinear
properties will also occur throughout the spectrum., Further, it is shown
in this report that the magnitude of the nonlinearity is, among other
things, dependent on the Boltzmann factor and increases in megnitude with
increasing frequencies. Thus at high frequencies these nonlinear effects
may be expected to play an important, if not dominant, role.

Scope of the Problem

The purpose of this research is to study these nonlinear effects and
to consider possible spplications.

The first task in a study of these nonlinear effects is to find a
method of formulation of the problem. 8Such a formulation should be valid
for the large field strengths encountered in exciting the nonlinearities
and must be capable of predicting coherent emission as well as absorption
for the higher order processes. For such an analysis the usual approech
of time-proportional transition probabilities and instantaneous quantum
Jumps between unperturbed energy states, used in solving maser problems,
is not applicable inasmuch as the assumptions implicit in the derivation
of the method are not velid. In perticular, the assumption of week field
strengths used in deriving the time-proportional transition probebilities
is not valid.

From such an analysis we should like to be able to evaluate the magnltude
of the nonlinear effect in terms of known or measursble properties of the
system such as naturel frequencies, linewidths, end matrix elements. The
effects of temperature, concentration and population should also be
congidered.

Finelly, possible applications of these nonlinear phenomene should
be considered. Included among these considerations should be the effects
of the material's surroundings, whether a cavity resonator, propagating
circuit, or free space.



Regulte

The results of the research described in this report mey be summarized
as follows:

1. A study has been made of the interaction of a radiation field with
an atomic system using an equation of motlion formulation including the effects
of relaxetion., This approech directly relates mecroscopic, dbservaﬁle
quantities to their microscopic sourqes, predicting nonlinear effects as
well as linear ones. The effects of atomic coherence are included, and
the formulation is valid for large as well as small field strengths. From
this analysis various nonlinear effects may be predicted and their magnitude
may be calculated in terms of known parameters of the system, -

2. Detalled theoretical analyses have beer carried out for three
specific cases.

g. Harmonic generation in a two-level system. From a consideration
of the interaction of an applied radiation field with a two-level electric
dipole system, third harmonic generation is predicted.lo Two velues of
the frequency of the applied radlation field are found which result in a
strong effect, namely when applied frequency or its third harmonic is
near the natural transition frequency of the atom.

A shift of the naturel transition frequency due to the strong rf fields
is predicted from the theory. This shift is the electric dipole equivalent
of the Bloch-8iegert, shift predicted by Blochll for the case of magnetic
resonance.

The magnitude of the induced third order polarization is calculated
in terms of the known paremeters of the system and the power generated by
such a means is calculated, assuming a resonant cavity structure. The
megnitude of the nonlinearity is found to be independent of whether or not
the system 1s in an inverted population state, although population inversion
is found to elter the efficiency through & modification of the source
impedance. The dependence of the nonlinear effect on other properties of
the atomic system 1s also considered.

b. Parsmetric effects in a two-level system.12 Parametric oscillation
and amplification are considered for a two-level electric dipole system.

The frequency conditions for such en effect are that the pump frequency

be equal to one-half the sum of the signal plus the idler, where the idler

may be either e cavity mode or the interpal transition of the molecule.
-4 -



An analysis is carried out for the latter cese and the start-oscillation
condition 1s evaluated in terms of the parameters of the atomic system
and the surrounding cavity.

¢. Harmonie generution in a three-level system. A three-level
system in which two natural frequencies are nearly degenerate is found
to present a nonlinearity suitable for second harmonic generation. Second
harmonic generation is predicted and its magnitude is evaluated from the
general theory. Of particular interest is the prediction that the effect
will occur not when the transitions are degenerate but when their values
differ by a frequency corresponding to one linewidth. This second harmonic
generation effect predicted by the theory was subsequently observed by
Kellington13

3. Two experiments at microwave frequencies have been performed to

and independently by the author.

verify various aspects of the phenomena predicted by the theory.

a. Third harmonic generation in a two-level electric dipole system
was observed using ammonie gas.ll+ The fundamental and harmonic frequencies
were 8.5 kMc and 25.5 kMc, respectively, and the inversion trensition at
2l ¥Mc was the two-level system. This experiment provided & direct con-
firmation of the effect predicted by the theory and gave results in general
agreement with the theory.

b. The phenomenon of second harmonic generation in a three-level
system was observed using the peresmagnetic resonance levels in the ground
state of ruby. This effect was independently observed and reported by
Kbllington,l3 who also used ruby under approximately the same operating
conditions.

B. RBRIEF HIBTORY OF THE STUDY OF MULTIPLE QUANTUM EFFECTS

Until recently, interest in the phenomenon of multiple quantum
transitions has centered on the study of these effects arising in various
types of absorption spectra. The first published reports on the observa-
tion of this effect came from the work of Khstler'sl5’16
from their study of the hyperfine spectrum of sodium. In their experiments

group, resulting

they observed the appearance of additional spectral lines not predicted by
the theory. These lines were present in the spectrum at high rf power
levels but were not present at low powers, while the frequencies of these

-5-
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new lines corresponded to the algebraic mean of adjacent predicted lines.
An example of the type of spectrum observed is shown in Fig.'l.l. In this
case the selection rule for the hyperfine transition is m = = 1 , where
m 1s the magnetic quantum number. With further study they found that

the phenomenon responsible for these additional lines was a double quantum
absorption for which Am =2 . This absorption process occurred when the
applied frequency was equal to one-half of the frequency difference between
levels differing in m by two units. Physically this process corresponded
to en absorption of two photons with the system going directly from a level
m toa level m+ 2 . Winterl7 showed that the ebsorbed power for this
two-qQuantum process was proportional to the square of the applied power,
explaining the absence of the effect at low power levels.

In subsequent reports, Margerie, Brossel and Winterl7’18

reported
three and four quantum sbsorptions as well as multiple quentum absorptions
involving combinations of two applied frequencies.

Other experimental results of sbsorption studies where multiple quantum
phenomena were observed have been described by Kush,lg Hughes and Geiger,eO
Wolgaal and others. Sorokin, et al.,22 found both double and triple quantum
ebsorptions in some of their paramagnetic resonance work on solids. In all
these studies the additional lines, due to multiple quantum processes, were
present only at high rf field strengths and in absorption rather than emission
spectra.

Thecretical studies of these multiple quantum absorption processes have
23 25,26 These studies

involve the use of time-dependent perturbation theory carried to higher

been done by Salwen, ~ Hughes and Grabner,zh and Winter.
order and predict multiple quantum ebsorptions. None of these analyses,
however, considers nor predicts any form of emission related to or resulting
from these higher order asbsorptions. It is precisely this latter effect
which is responsible for such phenomena as harmonic generation.

Following the proposal and successful operation of the solid state
maser, detailed theoretical studies of maser action were made by Javan,27
Clogston28 and Yataiv.zg These discussions pointed out that the rate
equation approach, used in earlier analyses of the maser, failed to
describe some of the quantum mechanical aspects of the radiation process.
In particular they found that under some circumstances double-guantum
processes could play an important role in maser operation. Yajime and

-6 -
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Bhim:odaBo-32 observed maser operation where these double quantum processes

play the dominant role. Anderson’> and Suh13h’35 et the same time analyzed
the operation of two new forms of quantum mechanical amplifier, the reaction
field amplifier and the ferromagnetic amplifier, both of which operated
without the need for population inversion. 1 Along this seme line a
proposal for a Raman maser was made by Ja.van3 and was experimentally
verified by Winper.37 The operation and analysis of these last three
devices is closely related to the suhjects discussed in this report.
Recently there has been renewed interest in the phenomenon of multiple
quantum processes, this time in the optical frequency range. Franken,
et al.,3 generated optical harmonicq by focusing the outEut of an optical
maser on a plece of quartz. Giordmaineg39 Meker, et al., 0 and Terhune,
et al.,ul followed with other experimental results of harmonic generation.
Kaiser and Garrett,h2 and recently J\bella.,ll'3

photon absorption processes. Another form of nonlinear process, coherent

have observed optical double-

Ramen scettering at optical frequencies, has been observed by research
groups at Hughes.hu’ 2 The microwave modulation of light has been
accomplished by Khminow,u6 end others, using the electro-optic effect
which is another form of bulk nonlinear effect.

Theoretical treatments of some of these nonlinear optical phenomena

48,49 end Kleinman.5o’5l of

have been given by Braunetein,u7 Bloembergen
these, the paper by Bloembergen = is perhaps the most thorough, discussing
these higher order effects from a point of view that shows the coherent
nature of the phenomena. The approach used by Bloembergen is, in many
respects, similar to that used by the author. The details will be
considered in following chapters.

The original suggestion for the use of these multiple quantim effects

22 Jaynes pointed

to produce harmonic generation is due to E. T. Jaynes.
out the generality and importance of multiple quantum effects and suggested
subharmonic pumping of a two-level system as a means of generating high
power levels at high frequencies. This suggestion of Jeynes provided the

initial incentive for the research described in this report.

(1)Although these devices have sometimes been included under the
broed heading of mascrs, their operation is essentially paremetric in
nature.



CEAFTER II
THE INTERACTION OF RADIATION WITH MATTER

< In this chapter we shall study the interaction of a radistion field
with en atom or molecule. A study of this type will form a basis for
analyzing multiple quantum or nonlinear phenomena as well as linear,
single quantum phenomena. Two approaches are presented. The first, using
the concept of transition probabilities, is developed to include both
single and double quantum absorption. The second is e mecroscopic epproach
relating the macroscopic properties of a material to its microscopic
properties.

A. RADIATION FIELD

In order to be rigorously correct the radiation field should be
quantized. However, if we are interested in large field strengths, corre-
sponding to large photon occupation numbers for the radiation fields, we
may consider the fields classically. In such an approach the fleld is
described by E and H , its electric and magnetic fields, or by its
vector and scalar potentials A and ¢ . Use of this approach neglects
the effect of spontaneous emission, which will not be important for the

microwave frequency range but may pley & role in optical phenomena.

B. ATMIC SYSTEM

The etomic system must be considered quantum-mechanically. The equation
governing the behavior of the quantum system isg Schrodinger's equation

1n g v =¥ 9 ;o (2e1)

where It) is the wave function of the system and H 1s the Hamiltonian.
If there are no applied radiation fields present, then the Hamiltonian
consists of the sum of the kinetic and potential energles of the atom.

-9 -



We shall, for the time being, neglect the interactions between atoms themselves
(spin-apin), and between the atoms and the lattice- (spin-lattice). This
Hamiltonian is denoted 'llo end has stationary eigensolutions |n) and
correspon(iing energies E_  satisfying the equation

HO |n) = E |n) . (2.2)

We shall assume that these energles and their corresponding functions or
kets are known. The functions {In)} aere assumed to be a complete set.

If we turn on the redistion field, then it will interact with the
atom and cause a change in the Hsemiltonian of the system. The new
Hamiltonlan may be written in the.e’form

y! =Ho + B ,  (2.3)

where & 1s the term due to the interaction of the atom with the radiation
field. We shall be interested in the case where the perturbation results
from a time harmonic field or sum of such fields and hence we may write it

iw * <lo
y ' Z ot ¥ L T L (2

The quantity H 15 real and the superscript 4 refers to the perticular

frequency present. For = given epplied fleld, H 1s proportional to the
field.

The matrix element of an operator Q 1n the energy representation is

defined as

Yy = (nlalm) . (2.5)

- 10 -



C. TRANSITION PROBABILITY METHOD OF SOLUTION

1. First Order Processes
In solving the radiation problem we agsume that the total wave function

is a superposition of the unperturbed eigenstates

-1 E t/8
X In) »  (2.6)

¥) = Z a(t) e
§ |‘ (t)

§ n

i

{

vhere an(t) 1s the coefficient of state n . Substituting (2.6) and
; (2.3) into (2.1) gives

114 = aane . (2.7)

The general approach to the solution of this set of equations is to assume
that the frequency of the applied signal satisfies the condition % m~ Ek - Em
and that the system is initially in the state m , am(O) =1 . If it

is further assumed that we consider the solution for times small enough

that the epproximation & =1 , a ~0 , n #m , is valid, then we

have from (2.4) and (2.7)

’, i(8 -
1nak=umke(’m @ ,  (2.8)

where ka = (Ek - Em)/h and the nonresonant term, involving the sum
frequency (akm + ®) , has been dropped. Upon integrating (2.8) subject
to the initial condition ak(O) =0 , we have

- e -
o (t) = —25 . . (2.9)

n (ﬂ,km-w)

-1l -
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The probability of occupancy of state k 1s then given by

oo 1P e (A - @)t/2
la |% = ——T = . (2.10)

2 2
A (nkm - )

If we assume that the final state i1s not well defined but rather is given
by a density of final steies, then in order to find the probability of a
transition to one of these states we must integrate over the density of
final states. We shall assume that the final state is not sharp on account
of line broadening &nd that the density of final states is given by a line
shape function g(v) , where

«©

f g(v) dv =1 . (2.11)

0

For & lorentzien lire we have

2 ‘I'2
g(V) = 2 ) 2 ’ (2'12)
14 bn T, (v - vo)

where T, 1s the spin-spin relaxation time.53 The probability of finding

the system 1n one of these states is given by

Prob: = \/ﬂ lak(v)l2 g(v) av . (2.13)
0

If we further assume that the strength of the perturbation is small, then
we can find a time t large enough that

2 .
sin” (@ - @)t/2 ~ f-t- (0 - w) s, (2.14)

@ - o) 2

- 12 -
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consistent with the assumption that at the time t , Iam(t)l ~ 1 .
By combining (2.10), (2.12), (2.13), and (2.14) and integrating, we have

P2 27
Probo = 2 d (2|l5)
515‘ 1+1.2 (0 -0

2‘

kn

The transition probability per unit time is given by

s g2
W = 4 ' . (2-16)
mk o x2 1 4Te(R - @)
2% km

Since # i a Hermitian matrix, we have H kS H;m , and

Voo =W ’ (2.17)

thus stating that the probability of the system going from k to m is
the same &8 its going from m to k . If we assume that Ek > Em and
the number of atomic systems in levels k and m are o and nm s
respectively, then the power absorbed by such & system is glven by the
product (transition probability)(energy per photon)(net difference in
population)

Pabs = (nm - nk)m wmk

P 2T
= (n - n)Ho . 2. 2 . (2.18)
LR ¥ 1eri( - o)

If the macrosystem is in a normal populatibn state, n - n >0 , then
the power absorbed is positive. Maser action occurs when an inverted
population is achieved, (nk - nm) >0 , and the power absorbed is
negative, implying emission. This single quantum process 1s linear in
the sense that the power absorbed or emitted is proportional to the square
of the field and hence to the incident power.

-13 -
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. The assumption leading to the derivation of this relation are that
t << T, in order that (2.14) be consistent with (2.12) end that
]%;k t/ti <<1 in order that lakl << 1 . Combining these gives the
relation

J!I'Ta
—_—<< 1 e« (2.19)
1

If we look upon T2 as the coherence time of the atom (coherence being

disturbed by "collisions" occurring with a mean time ‘1‘2) then (2.19)

states that G"/h)-l , which is a measure of the time it takes to cause

a transition, must be greater than the coherence time. In other words the
assumptions leeding to (2.16) and (2.18) are satisfied only if the perturba-
tion 1s weak enough so a&s not to introduce coherence effects in the atomic
system.

2. Higher Order Processes

The equations derived in the preceding section assumed energy conserva-
tion, w = nkm
rediation. These results may be extended to processes involving more than

, and the absorption or emission of a single quantum of

a single quantum by carrying the calculation to higher order. These higher
order processes may involve qusnta from different radiation fields or more
ihen one quantum from a single radiation field. In order to be definite
we shall consider the latter and calculate a double-quantum absorption
process. The important aspects of multiple quentum processes will be
evident from this specific calculation.

let us assume, as before, that the system is initially in state m ,
am(O) =1 . Then the equations for the & to first order, are given

by (2.9):

18, - w)t .
H o -1
e (t) = - == : - (2.9)

n @, - @)

-1k -



Bubstituting these first order solutions into (2.7) gives, for ik to
second order,

i(a, - 2w)t

1ma = Z n(n e = ,  (2.20)

-(D

vhere we have assumed that now 2w & nkm and that the frequency o 1is

not near any of the natural resonances, an and Q . Upon integrating

(2.20) under the above assumption and finding the quantity Iakle we
have

. .2

b H M 1n2(n, - 2w)t/2
|,k|2 == mn_nk iy : a»;t/ . (2.21)
S O e n(am - w) (nkm - 2m)

After comparing with the first order case, (2.10), we see that the expressions
are similar, with (nkm - ) being replaced by (nkm - gov) eand the matrix
element & 'k being replaced by the sum

HOW
Z ~mn_nk . (2.22)

- n(nnm - w)

By performing the integration over final states, we have for the transition
probability

2

1 2 'I‘2 (
- — 2.23)
2 Z 2 2 ’
n(n cu 1+ '1'2(9lcm - 2w)
and for the power absorbed
Pos ™ (nm - nk) ot W, . (2.24)

-15 -
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The importent aspects of this double photon absorption, quantitatively
described by (2.23) and (2.2%), may be seen by considering a single term

from the sum appearing in these expressions. This term describes the coupling

of levels m and k with the level n acting as an intermediate or
"virtual®™ state. The term virtual is used because the intermediate

state (quantum system in level n , rediation field with N - 1 photons)
does not conserve energy with the initial state (quantum system in level

m , rediation field with N photons). The amount by which energy is not
conserved is given by the energy denominator, n(nnm -®) . The total
probability of a trensition from state m to k involves a summation over
all possible virtual levels, taking into account the lack of conservation
of energy through the energy denominator.

The following conclusions can thus be reached regarding these two-
photon processes:

(1) There must be scme intermediate quantum state n which is
connected both to the initial and to the final state. This state may be
& third level. or either thg initial,or finel state itself. In the latter
case a term of the form }‘m or Hkk would be involved.

(2) The strength of the effect will depend on how close the virtual
states come to conserving energy; the closer they are to conserving energy,
thg stronger the effect. The second order effect will be of the order of
@ /ﬁ(nnm - w))2 times the first order effect. )

(3)’ The: power sbsorbed depends on the fourth power of H and,
since ¥ 1is proportional to the applied radiation field, the power
absorbed is proportional to the fourth power of the field or to the
square of the applied power.

Second order processes involving two different frequencies and higher
order processes involving more than two quanta are considered in s similar
menner. The third order process, for example, will involye two virtual
states.

3. Example

As an example consider a three-level system with unequally spaced
levels, (Fig. 2.1). Let the energy eigenvalues be El » E2 s E3 , and
define the natural frequencies 931 = (E3 - El)/h , etc. Let us further
suppose that there are matrix elements of the perturbation connecting

- 16 -
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FIG. 2.l1--Energy level diagram of a three-level system. FPirst order
absorptions occur at and Q . Second order absorp-
tion for 2w = Q is gﬁown withBE "virtual" level depicted
by the dotted 1irk.

Relative
Absorption

1
'
[}
L 1
932 Q2l W

FIG. 2.2~-Theoretical absorption spectrum at low rf power levels.

Relative
Absorption

] ' ]
; \ i 0
1 _4 i ) -
A vy
3 (932 + 921)

FIG. 2.3--Theoretical absorption spectrum at high rf power levels. The
double quantum absorption appears midway between the two first
order absorptions, here shown saturated.
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levels 1 and 2, and 2 and 3, but levels 1 and 3 are not directly connected
in first order. An observation of the spectrum of this system would, to

first order, give two lines centered at 921 end as shown in Fig.

32
2.2. Llevels 3 and 1, although not connected in first order, are connected
in second order via level 2. The power ebsorbed in this case, from (2.24),

is

72
n, | H,H,, | 2T,
Pavs (nl ! ) 5 (2.25)
! ﬁ(n21 - m)| 1+ '1'2(5231 2w)

vhich shows a peek at 2w = 931 = (932 + 021) , or the algebreic mean of
the two first-order lines. This is shown in Fig. 2.3. From (2.25) we see
that although the double quantum absorption line always occurs at the
frequency o = 931/2 , 1ts strength will depend upon how close to degeneracy
Q32 ?;% 921 are. Upon comparing this example with Kastler's original
work, we see that this is precisely the effect he sawv

We may summarize this approach by the following observations: First
of all, for the field strengths usuelly encountered in experimental
conditions the transition probability method correctly predicts single
quantum sbsorption and emission processes &s verified by experimentation.
When carried to highér order, the theory predicts multiple quantum
sbsorption processes which have been experimentally observed. The
assumption on which the derivation is based, Eq. (2.10), does, however,
limit the general validity of the theory to field strengths satisfying
this condition. Further, it is not clear from this point of view how
a process such as the absorption of two photons at frequency w and the
coherent emission of a single photon at the frequency 2w would be handled.
Rather than pursue this approach further, we shall turn to the macroscopic
approach, which avoids many of the problems inherent in the use of tran-
sition probabilities.and which is used through the rest of this paper.

D. MACROSCOPIC APPROACH

We may begin a study of the macroscopic approach by writing down

(l)See Chepter I.
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Maxwell's equations in the presence of matter:

3 L
vx!--%—%{g ’ ng-%gg-r-f-g ’ (2.26)
V+eD=Ump , V-B=0 ’ (2.27)

along with the constitutive relationa
D=E+4 , B=F+ b . (e.28)

The characteristics of the matter are embodied in the quantities P and
M , the polarization and magnetization, respectively. In particular,
the relations

P=PRE) , M=ME s (2.29)
define the response of the material to the applied fields.(l) If the
dependence is known, then & solution to Maxwell's equations may in principle
be found. It is generally assumed that P is proportional to E , and

M to H , giving the tensar susceptibilities, Xe and X.m :

P=XE
~ e~

=

= Xn‘lﬂ . (2.30)

b

From these susceptibilities the familiar dielectric constant and
permeability are defined as

€=1+ ll»n'xe ;, H=1l+ h?tXm s (2.31)

vhere now

R=< , B=uE - (2.32)

(1)) more general relation would be P =P(E , E) and ¥ =MN(E , E) -
We shall for simplicity assume the simpler relations, (2.29), where the
polarization depends only on the electric field and the magnetization depends
only on the magnetic field.
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The above relations form the basis for the solutions to Maxwell's equations
for the linear case. 4

It is more generally true, at least we may assume so, that the polar-
ization depends not only linearly on E but on higher powers as well. By

using e similar srgument for the magnetization we may write these more
general dependences &s

p-xV e x@ gg e xBppr,. ..
~ e ~ e ~ ~ e ~ N~

(2.33)
m=xD g x@ g xDggg.. ..,

where the new tensors are of higher order.(l) This more general constitutive
relation is seen to give rise to nonlinear effects. For exasmple, 1f E
varies as cos wt , the term E ,g will have a component at the frequency
2w and through (2.28) and (2.26) radiation fields will be set up at the
frequency 2w . '

Equations (2.26) through (2.33) constitute a description of the
macroscopic electromagnetic field for both the linear and nonlinear cases.
It remeins, however, to determine the response of the medium to the applied
fields, Eqs. (2.29) or (2.33). 1In particular we should like to determine
this response analytically from the microscopic properties of the atomic

systens making up the medium. The basis for such a calculation follows
from the relations

g:N}M:I‘E' ’ (2-3’4)

where P and M as before are the macroscopic polarization snd magnetization,
N 1is the number of atoms per unit volume and E and E are the averege

or expectation values of the polarization end magnetization per atom.(e)

The average implied by the double bar constitutes both a statistical

(2) (l)For example, the second term in the expansion(g r P would be
P‘i = 13k EJ Ek and the third term would be Pi = xijkrf,EJEkE?L .

2)Bee J. H. Van Vleck, reference 54, for a proof of this relation.
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aversge and a quantum mechanical aversge, the latter coming eas a result
of the inherent statistical nature of quantum phenomena. The problem
thus is reduced to & quantum statistical evaluation of p and m in
response to the radiation fields present.

E. EVALUATION OF THE MACROSCOPIC PROPERTIES: THE DENSITY MATRIX APPROACH(I)

The density matrix formulation provides & direct means for formulatins
quantum statistical problems. The density matrix may be characterized by
its equation of motion,

i = (#, _p] + % (p - 0°%) ’ (2.35)

(2)

and the prescription for finding the expectaticn value of an observable,
(Q) = Trace (oQ) . (2.36)

In these expressions p 1is the density operator, H 1s the total Hemiltonian,
p° 1s the value of p at equilibrium, and T is the relaxation time
associated with the return to equilibrium. The value of T will depend
on the particular element of the density matrix considered. In general,
when using the energy representation, T may be divided into longitudinal
or spin-lattice relaxation times associated with the diagonal componenta
of o and transverse or spin~spin relaxation times associated with

the aff-diagonal components of p . The longitudinal relaxation times,
usually denoted by T1 , describe the}characteristic time in which

the spin systenm and the lattice reach equilibrium with each other,

This process involves the exchange of energy between the spin system

and the lattice. The transverse relaxation times, usually denoted by

T, » describe the characteristic time in which the spin system reaches

equilibrium within itself. This relaxaticn process is important in determining

(I)For an alternatiye approach to this calculation see 8 er,55 Chapter
6,pp. 154-157, Kramers,”’® Chapter 8, pp. 480, and Bloembergen. Briefly,
this method involves a calculation of the perturbed wave function due to the
applied fields end the evaluation of the polarization and maghetization from
these wave functions. This method assumes, however, that the frequency of
the radiation field is not near any natural transition frequency and hence the
field causes no transitions. The method used here is not limited by this
assumption.

(Q)These relations are derived in Appendix A.
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the effects of coherence in the atomic system, In Eq. (2.36) the trace is
teken of the product of the matrices defined as

©
n

(n]p|m) (2.37)

O
L}

(n]Q|m) , (2.38)

where In) is any complete set of functions. It is usually found convenient
to define this set of functions as eigenfunctions of the unperturbed
Hamiltonian, 210 s where

Ji3|n> = En|n> . - (2.2)

In this representation the time average value of the diagonal terms, p

nn ’

when normelized such that % Pn = 1 , may be interpreted as the probability
of occupancy of level n . The off-diagonal elements, pnm , are
interpreted as giving a measure of the amount of coupling between levels

m and n , where the coupling is proportional to the magnitude of the
element. The procedure for finding the values of the observables is first

to solve the density matrix Eqs. (2.35) under the particular conditions

of the problem. From this we have a knowledge of all the elements Pom *

The magnitude and phase of an observable quantity is dependent on the
elements of p through (2.36) and is generally dependent on both the
disgonal and off-diagonal components of p :

Q)

) P %

m,n

(2.39)

Duaal v‘l
2J Pan %on * ZJ Prm Son )
n n

mfn

The matrices of the observables are assumed to be constents, 1nde§endent
of time, and hence the time dependence of the observable is found from the
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time dependence of p . By examining the equations of motion for p ,
we can see what the time dependence is, and in particular we can see how
lineer. ‘and nonlinear processes srise. ‘

Let us write Eq. (2.35) in matrix form in the following wey:

n=mnm
by + 3 (P = P = Za";c Ot~ Pot W) (2.40)
n#f{m
inp .
o, (B -E)o +— U (o -5 )
T
(2.41)

o o - Hg) v ) Cpey e dy)

nm
n,m

From these equations we can see first of all that the "natural frequency"
of the diagonal components is zero while for the off-diagonal term Pom
it is (Em - En)/n . Clearly e given component will be most strongly
driven when the frequency of the driving term is near its natural frequency.
1. Linear Effects ,

Direct coupling of %evels n and m occurs via the term }ﬂun(pmm -p
and is strongest when )ﬂml varies with time as exp i(Em - En)t/§ . As
a result of the direct coupling term, Prm is proportional to }ﬁnn and
hence to the applied field. Evaluation of an obserwvable through Eq.-
(2.39) elso gives e linear dependence on the applied field. Hence the
direct coupling terms are seen to give rise to linear effects, among
which are those described in Egs. (2.32).
2. Nonlinear Effects

In additign to these direct coupling terms there are additional terms
of the form ]inﬁ qlm which describe the indirect coupling of levels n
and m via level 4 . These terms include the right hand side (rhs)
of (2.40) and the last two terms on the rhs of (2.41). A term of this

)

nn
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form describes the fact that if levels 4 and m ere coupled, Pp, f o,
and if £ 1s also coupled to n , lln& Fo, ‘then n and m will also

be coypled. If LT is proportional to u{m , then Pam is proportional
H{m , &nd hence an obsarvable deperdent on Pam will be quadratic in the

applied fields. A term of’this form thus gives rise to a nonlinear de-

pendence on the field and sccounts for. the. second term in Eg. (2.33). If
p£m is nonzero because of indirect coupling to some level 4 ,

then Prm is proportional to }ﬁﬂl]%&qzu and is thus a third order
quantity in the rediation fleld. An observable dependent -on P would
thus be proportional to the cube of the field and would give rise to third
order nonlinearities.

We thus see that, in this particuler formelism, nonlinear effects
are handled by means of a consideration of indirect coupling mechanisms.
Processes of any order may be handled by this means.

The usual method of solution of such a problem mey be summerized as
follows:

(1) For the particular problem at hend allow for all the radiation
fields which are present by including appropriate terms in the Hamiltonian.

(2) Assume solutions for the components of the density matrix of the
form of harmonic series of the frequencies present.

(3) Find a steedy state solution by equating terms with the seme
time dependence. This results in a set of algebralc equations which are
then soluble by standard methods. In practice, simplifications can
usually be made which will meke these solutions easy to obtain.

Once the density metrix is found, then through (2.34) end (2.36) the
macroscopic properties are known and Maxwell's equations (2.26) through
(2.29) may be solved under the particular conditions of the problem.
These equations then form & self-consistent meens of solving the general
radiation problem.

3. Examples
Let us briefly consider two examples using the density metrix approach.

a. Spin 1[2 System

Assume that a spin 1/2 system is in a dc megnetic field and that the
natural frequency of the trensition is given by (E - B )/ﬁ f . Choose
the representation to be the one in which S and Sz are diasgonal,
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vhere the matrices of the x and 2z components of the magnetic dipole
operator eare

01 10
b =B > By =nl | . (2.k2)
10 0 -1

If an rf magnetic field El cos wt 1s applied in the x-direction, then
the interaction Hamiltonien is

’

H =- w, By cos at , (2.43)

and hence the nonzero matrix elements of H  are

¥y, =¥, = - uE cos at L (2k)

Substituting (2.4%) into (2.40) end (2.41), using the longitudinal and

transverse relexation times, Tl and T2 , defined in Appendix A,
end employing hermonic balence gives the following solutions for p

o l¢] it
-1 T, b H (o) - pyp) ©

P = (2.]4»5)
12 25 (1 - 17,8)
_ e
P21 = P12 (2.46)
(s} (s} 2
o (p11 - 922) B H.zl T, [8in 2wt + T 0 cos 2wt ] \
P11 = P11 - 2 3 (2.47)
bl + T2 %)
p‘22 2] - pll (2.14'8)



e < s st gy e o s

it v e s g 15

_and

e e
P11 = P
(+] o
pll - 922 = - ) 32 2 (2',"‘9)
m
1 12 1
+=3 5 2
n°(1+ T, 8 )
where
6 = Q -n . (2.50)

The quantities p., and pzz are the thermel equilibrium values of p
while pil and Py 8re the dynamic equilibrium values or the average
values with the rf fields present. Equation (2.49) thus describes the
effects of saturation. PFrom (2.39), (2.42), (2.45) and (2.46) we find
the expectation value of the x component of the magnetic dipole moment

) =n (py, + ;)

2 o o
P hT . (sin ot + T, & cos at) .  (2.51)
n(1 + TS &%)

2

The power absorbed is given by

P. = (n) H cos wi
abs X 1 time average

. (2.52)

“‘Hl)a 2T,

- o - o —
= (pyy - ppp) 0 (am 1+ 'rg(n - @)?

By multiplying by the number of particles N and noting that N(pil - pga)
1 o s We see that (2.52) is the same as (2.18), calculated by
transition probabilities, where Hle = W /2 .

=n, - n
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If ve now evaluate <"z> » the expectation velue of the z~-component
of the dipole moment, we find from (2.39), (2.42), (2.47) and (2.48)

p'z = ”(pll - paa)

(2.53)

2(ey, - "22)"3 Hi T
—_— > (sin 2wt + T, cos ut) |,
11 + 15 8°)

O (*]
= p'(pll - 922) =

vhich shows a dc component es well as a component et the frequency 2w .
This component at 2w comes as & result of the indirect coupling of level
1 to itself in second order viea level 2, and similarly for level 2 via 1.
When this latter component of M, is introduced into Maxwell's equations
it will give rise to radiation fields at the frequency 2w ,. sn effect
not predicted by the method used to derive Eq. (2.18). Hence we see that
the density metrix formulation gives a more genersasl approach, giving more
information than do transition prababilities.
b. Three-level System

For the secord example let us consider the three-level system

previously discussed in section C.2, this time using the density matrix
approach. To be definite, let us assume magnetie dipole transitions and
an applied field El cos wt . The nonzero perturbation terms are

3112=-p.12H1coswt

01 Hoy H cos wt

(2.54)

23 p.23 H cos wt

: Mo, H cos wt .
| 32 32
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By essuming that 912 *12 e R p23 1323 e R p13 x13 e

then to first order we have the soluxions(

o _ 0O
112 - w (2,55)

2% [(u21 -w)+ 1/'1'2]

(o} (o}
s - (Rgp = P33) oy ) (2.56)
on [(n32 -w) + 1/T2]

and

113 =0 , to first order . (2.57)

A calculation of the magnetic moment using these values would predict

first order absorption at w = ) and w =0 By keeping second

21 32
order terms we find that levels 1 and 3 are coupled since level 2 is
coupled to both 1 and 3 in first order. 8implifying the exact expression

somevhat by assuming that (Q,, - w) >> l/T2 and 20 = Q5 gives

_ 1T Hp My 5

A3 N

(¢] O

where § = 021 - . Finally, using this value for }‘13 , we find that

}‘12 and 123 teake on nonzero third order terms. In the case of 112

this occurs as e result of the fact that levels 1 end 3 ere connected
(in second order) and 3 is in turn connected to 2, A similar argument

applies for A These third order terms are

23

3
iT, B, Hop My H
(2 . 2 2525 2= (69, - o3 (2.59)

(l)See Chapter V for a derivation of these equationsg and for a more
detalled explanation of this problem.
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and
3
\3) _ 1T, by, By u23_31 (62, - 0°.) , (2.60)
23 853 62 33 11
where the time dependence 1s still eimt . Calculation of the magnetic

moment from the relation

and subsequently evaluating the power absorbed, gives Eq. (2.25) where ve
have set 2w = 931 + Thus not too unexpectedly we arrive at the same
ansver as was given by the transition probability method. One importent
point cen be made, however. If the selection rules for the traneitions
were such that M)y was not zero, then from (2.39) and (2.58) we immedi-
ately find 2 nonzero component of magnetization at 2w and, as mentioned
before, this will generate rediation fields at the new frequency. A more
detailed anelysis of this particular case is given in Chapter V.

F. GENERAL ASPECTS OF NONLINEAR QUANTUM EFFECTS

From the formulation of the problem presented above we can drav
some general conclusions about the variocus nonlinear effects which are
possible.
a. The strength of the nonlinear effect measured by the magnitude of the
nonlinear polerizetion or magnetization will be proportional to the
magnitude of the higher order components of the density metrix. These,
in turn, will involve combinations of first order terms in the density
metrix. Hence the higher order effects will, in general, be large when
the corresponding linear effects are large. The latter are found to be
largest when the matrix elements connecting the various levels are large
and when energy is nearly conserved, i.e., when the applied frequency 1is
near a natural transition frequency (if the applied signal is resonant
with a natursl frequency then the strength of the transition is inversely
proportional to the linewidth of the transition). We then see that
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nonlinear effects will be strongest when the frequencies of the radistion
fields are near the naturel frequencies of the transitions involved end
when these transitions are strong. The dependence on the proximity to
natural resonant frequencies points out the fact that for a given material
the nonlinear effects will be frequency-sensitive. This is in contrast

to a diode, for exsmple; where the nonlinearity is relatively frequency in-
sensitive.

b. 1In general, the higher the order of the effect (the larger the number
of photons involved), the smaller is the magnitude of the effect. 1In
practice second and third order nonlinear effects will probably find the
most application.

c. The total energy of the fleld and atomic system must be conserved in
the overall interaction. This may be achieved either by the radiation
field and the molecule separately conserving energy, or by an increase

in energy of one system being compensated by a corresponding decrease in
the energy of the other. In the latter case the change in the energy of
the quantum system must correspond to the difference between two of the
eigenenergies E , defined in (2.2).

d. The type of nonlinearity, i.e., whether even or odd, and the number

of photons involved, depends upon the number of levels involved and on

the selection rules for the pertinent transitions. The selection rules

are, in turn, determined by the symmetry properties of the atomic system
and its surroundings. For example, if a crystal has a center of inversion,
then only odd order effects due to electric dipole transitions are allowed.38
e. In any nonlinear effect there will in general be contributions to the
effect from meny combinations of levels. It may be the case, however,
that the contribution of two or three of the levels dominates, in which
case the essential properties may be found from a consideration of the

simpler two- or thyee-level system.

G. EXAMPLES OF NONLINEAR EFFECT3

We masy consider briefly some of the more important effects possible
in two- and three-level systems. Some of these effects are considered in
detail later in this report, some are considered by other authors, and
some have not yet been investigated.
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1. Two-level System
a. Harmonie Generation

From an examination of the density matrix Bqs. (2.40) and (2.41) for
the specific case of a two-level system, it can easily be seen that the

off-diagonel components contain only odd powers of the applied field, while
the diagonal components contain even powers. From (2.39) we see then,

that if a dipole moment, which may act as a source of radiation, has
diegonal components, then generation of even harmonics is possible,
vwhereas 1f it contains only cff-diagonal components, then, only odd
harmonic generation is possible. The question of diagonal and off-diagonal
components of the dipole is determined by the type of interaction (megnetic
or electric dipole) and upon the symmetry of the Hemiltonian. Second
harmonic generation is briefly discussed in part E.3 of this chapter and
third harmonic generation 1s considered in detail in Chapter III.
b. _Parametric Processes

There are several types of parametric processes possible in a two-
level system. They may be separated into two classes depending on whether
the dipole operetor possesses a diagonal component (“ll or u22) , or
not.

If the system possesses either a B or a Koo then the two processes
shown in Figs. 2.l apd 2.5 are possible.

FIG. 2.4--Perametric process with three frequencies preccnt;
“ll or p22 nonzero.
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FIG. 2.5--Perametric process wilh two frequencies present;
B)y OF M,, nonzero.

In the firgt, shown in Fig. 2.4, a strong field is applied at the
frequency w o, end two rediation fields at frequencies w, and

2 3
are generated by the nonlinear action. This is & threshold etrfect and

requires = w2 + u)3 in order to conserve energy. Such a system is
essentially considered by Suhl.35 The second effect, shown in Fig. 2.5,
involves only two radietion fields, at oy end . , and is usuelly

2

referred to as a Raman effect. From section F above,. we have = w,

+(E2 - El)/n . Neglecting the effects of spontaneous emission, this is
also a threshold effect. Javan has considered this as a form ¢f Reman

36

maser.

For systems with e dipole moment containing off-diegonal components

two persmetric processes are also possible and are shown in Figs. 2.6
and 2.7.



‘“.L:[- \"*h

El.—-

FIG. 2.6--Parametric process with four frequencies present.

FI1G. 2.7--Parametric process with three frequencies present.
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In the first, Fig. 2.6, four radiation fields are present, their
frequencies satiafying oy + m2 = 033 oy Here, for example, fields
epplied at w and w, vwill generate filelds at oy end @, when the
magnitude of the applied fields exceeds & threshold value determined by
the parameters of the problem. In the second case the quantum system
resonance replaces one of the radiation fields and the frequencies must
satisfy ) + @, = @y + (2, - El)/n . This is also a threshold effect
with a field at ma generated when the fields applied at @ and mb
exceed a given threshold. In the last two cases considered it is possible
for o to equal ab » reducing the actual number of fields present.

The second of these effects is considered in Chapter IV while the first
has not been considered in the literature.

In the case of the two-level system we find that the presence of e
disgonal component of the dipole operator allows processes involving one
less rediation field then for systems with only off-diagonal matrix elements.
This mey be seen by comparing the processes described by Figs. 2.4 and 2.6
and those shown in Figs. 2.5 and 2.7.

There are several possible applications of these parametric effects.

As in the case of classicel parametric systems, these quantum systems may
act as amplifiers when operated below threshold and as oscillators when
operated above threshold. The two cases shown in Figs. 2.5 and 2.7 have
a slightly different charecter than classical perametric effects. Here

the quantun system acts as the "idler,” removing the necessity for providing

an electrourcznetic field at this frequency.

2. [Three-level System

The number of nonlinear effects possible in a three-level system
exceeds those possible in a two-level system as a recult of the additionel
number of combinations of levels possible. We shall thus pcint out only
some of the important possible applications. The first is & three-
frequency mixing process, shown in Fig. 2.8.

By A
o/ \3
E2 —f-
N
El
FIG. 2.8--Three-frequency mixing process;

Bip o u23 s ul3 all nonzero.
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Here, the application of eny two frequencies, ® , w, or a)3 s
vhere wy + w, = m3 s will generate fields at the third frequency if
all the transitions are allowed. A special exemple of this is the case
in second harmonic generation where o =0, , considered in Chapter V.
Such a mixing process could also act es en up- or down-converter.

The reverse of this process, nemely where fields at m3 are applied
and parametric oscillations at w,
has been consldered as a form of amplifier by Anderson.

Javan,27 and Shimoda and Zx‘.'a.jima3 0-32
to that of Fig. 2.8, in which only two rediation’ fields are present. This
is shown in Fig. 2.9 vhere now o =a, + (Ee - El)/n and only the 1-3
and 2-3 trensitions need be allowed. This effect is very similar to that

considered in Fig. 2.5 where now the coupling to the third level replaces

and w, occur above a given threshold,
33

haeve considered a process similer

the self-coupling (pll or u22) . This is also & type of Raman effect.

FIG. Z.9--Parametric oscillator; p.13 and p.23 nonzero.

Finally, let us consider the three-frequency process shown in Fig.
2.10. E

El_....___.__

FIG. 2.10-~Three-frequency parametric process; P1o end p.23 nonzero.
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Here it is assumed that there exist nonzero dipole momente connecting
levels 1 and 2 and 2 and 3. The application of radiation fields at o
and @, will cause & field to be generated at the frequency wB s when
the level of the applied fields exceeds a given threshold. If @ =,
then this process 1s seen to proyide a form of parametric emplification
where the pump frequency is near that of the signal. This has not been
previously considered.

H. SUMMARY

In this chapter nonlinear as well as linear effects have been discussed
and their analysis has heen presented from the transition probability end
density matrix points of view. The latter approach is the more general
end is best suited for the types of problems where multiple quantum
processes are involved. The nonlineerities encountered mske possible
harmonic generation and various forms of parametric processes which may
be used for amplification and mixing.

8ince the natural frequencies of atoms extend from radio frequencies
to optical and sbove, these forms of nonlinear, multiple quantum effects
will similerly occur throughout the spectrum. The transitions involved
may include paramegnetic, rotational, vibrational, and electronic energy

levels.
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CHAPTER III

THEORY OF THIRD HARMONIC GENERATION
IN A TWO-LEVEL QUANTUM MECHANICAL SYSTEM

In this chapter we shall consider the theory of third harmonic
generetion in a two-level quantum mechanical system. Such a system may
consist of only two levels as in the case of a spin 1/2 magnetic dipole,
or & particular pair of levels in the case of a more complicated atomic
structure. The classical interpretation of the problem is presented
briefly, followed by a detailed quantum mechanical analysis in which
various aspects of the interaction are discussed. The results of the
analysis will be applied to the specific case of third harmonic generation
in a gas where the inversion transition in NH3 is used as an example.

A comparison of these predictions with the experiment performed on
NH3 are presented in Chapter VI.

A. GENERAL CONSIDERATIONS

The problem to be examined is the interaction of an electromagnetic
field of frequency = 2xv with a quantum mechanicel system consisting
of a palr of levels wilth energies El and E2 and & natural frequency
Q= (E2 - El)/ﬁ . Such a process may take place via either an electric
dipole or magnetic dipole interaction (electric quedrupole and higher
order interactions will not be considered) and the order of the interaction,
i.e., the number of photons involved, will be determined by the type of

interaction involved. These may be summarized as follows:

1., Electric Dipole Transitions
a. Induced Electric Dipole
When the interaction is pure electric dipole in character, provided

neither the upper nor lower state possesses a permanent dipole moment,
then only odd order intersctions may occur, i.e., only an odd number of
photons may be absorbed or emitted. Thic type of interaction will occur
vhen each state has eithef even or odd parity.
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b. Permanent Blectric Dipole

If either of the states possesses & permanent dipole moment or a dc
electric field is applied (creating a permanent electric moment via a
mixing of states)(lg then even order interactions are allowed as well
a8 the odd order ones. Permanent moments may exist when a state has neither
even nor odd parity.

2. Megnetic Dipole

If the transitions between stetes are due to pure magnetic dipole
interactions, then three possible situations may be considered:

a. Hrf Perpendicular to Hﬁc

If the rf magnetic field is orthogonal to the dc field (assuming a
free spin and no crystalline fields) then the only transitions which.éfe
allowed are of the form Am =1 1 , where m 18 the magnetic quantum
number. In order to go from one level to the other, a net change in m
of 1 is required. This 1s seen to occur only when an odd number of
photons 1s involved.

b. Hrf Parallel to Hdc

When the rf magnetic fleld is parallel to the dc field, the photons
carry no angular momentum. In this cese, no transitions are allowed between
states which have different m values.

c. Hrf Arbitrary Relative to Hﬁc

With the rf field in an arbitrary direction, it may be divided into
components parallel to and perpendicular to Hﬁc ; these photons carry
O and * 1 units of angular momentum, respectively. Transitions between
states can then occur with any number of photons.

The phenomenon of second harmonic generation involves the absorption
of two photons and the emission of a single photon at twice the frequency.
From the discussion above, such a process 1s seen to occur in either a
magnetic dipole system of type (2c) or in an electric dipole system
possessing a permanent dipole moment (lb). Third harmonic generation may
occur in magnetic cases (2a) and (2c) and for either electric dipole case.

For the two-level system, the electric dipole transitions have the

distinct advantege over their magnetic counterparts in that the value of

(1)In the absence of state mixing and for states of elther even or
odd parity, we have the quantity (ilxli) = 0 , which means zero permanent
electric dipole moment. If a dc field 1s applied or the state has neither
even or odd parity, then we have (i|x|i) $O , and a permanent dipole exists.
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the electric dipole moment, (in C.G.8. units where E = E) , is typically
‘100 times that of the magnetic dipole moment. Since the output power
generated varies as some high power of the dipole moment, (eighth for third
barmonic, sixth for second harmonic) megnetic dipole interactions are of
little interest compared to their electric counterpert. In this chapter
we shall consider third harmonic generation in en electric dipole system.
Magnetic dipole transitions will be considered later in Chapter V, pertain-

ing to three-level systems in which other factors are made to compehsate
for the smallness of the dipole moment.

B. PHYBICAL PICLiURE OF THE PROBLEM

At this point, before launching into a detailed quantum mechanical
study of the problem, it is perhaps appropriate to consider it from a
physical point of view. Let us assume that we have an atom in which there
is a single electron bound to the nucleus by some form of potential well.
For simplicity, assume the electron to be .a localized particle with
coordinate x (rather then a smeared out wave function) and assume that
the potential is expaended about its equilibrium position. From texts on

classicel mechanics(l) the potential (assumed one-dimensional) may be
written

av 1l /ad >
V=V(xo)+(d-:) . (x-xo)+-—' —3 (x -xo)
X

2! \dx
0 %0
(3.1)
1 fa¥y 5
& m— "—-5 (x - xo) * o ¢ ’
3! \dx «

0

where the first term is an additive constant to the zero of energy which
may be set equal to zero without loss of generality and (dV/dx)xo =0

(Lp

or example, see Ref. 57,p. 319.
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since the point X, is assumed to be & point of equilibrium. Taking

x°=o s we have

2,1

V(x)=%v x +3V2x3

1 .+%‘-V3.x’+ +. .. ’ (3.2)

where the constants Vl ) V2 y V3 may be derived from the coefficients
in the Teylor expansion of V(x) . We shall be interested in the qualita~
tive details of V and not in its quantitative nature since in practice
such detailed knowledge is not usually available. In the usual case, for
small excursions, the first term predominates in the expansion and one
obtains simple periodic motion with a naturasl frequency given by the

relation

v

2 1
o = — . (3.3)

° n

If the particle has a charge e , then the epplication of an oscillating
electric field E cos wt will cause the charge to oscillate at the frequency
w in response to this drive. The equation of motion for the particle,
assuming only the first term in the expansion for V to be kept, is

dx , eE
—3 + @y X = — cos t . (3.4)
dat m

The solution is easlly seen to be

X = m2 2 » (3'5)
U)o -

where the particle oscillates at the frequency of the applied electric
field and the strength of the oscillation 1s proportional to the applied
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field and depends on the relation of the aoplied to nutrual frequencies
through the resoneance denominator. ()
The polerization or dipole moment induced by “he moticn of this charge

is
e2 E cos at
m(coo - )
gliving the susceptibility. per atom
2
e
X = ——5—Fsr - (3.7)
m(u)o -w)

If now the magrnitude of the fundemental excitation, measured by
% 5, BEq. (3.5), is increased, the higher order terms in the expansion of
V(x) become increasingly important and must be incluvded. In order to
Le specific, let us assume that the potential function V(x) is symmetric,
V, = 0 , and the next nonvanishing term in (3.2) is V3 xh/h . By
including this in the equation of motion for the cherge, Eq. (3.4), we have

2 3

dx vV, x eBE

__2+w2x+i-—-=——coswt . (3.8)
0

dt m m

To first order in the perturbation E the solution is simply that
given by Eq. (3.5). Upon substituting the first order solution into
(3.8), expending the term containing 3 , and using the trigonometric
identity cosSwt = 1/4 (3 cos ot + cos wt) , we find that in order to
satisfy the equation to the order of V3 we must include in x a term

(l)For completeness there should be a term in the differemtisl
equation (3.4) which is proportional to x and which describes the
damping, both dissipative and radiative. This term will remove the
infinite response.for x 1in Eq. (3.5) vhen o =awy . .
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at 3 . Harmonic balance yields

. (3.9)

22 (%)3 cos 3ut
x3 N

1
=T 2 2., 2 2.3
4 (9 & - wp)(wg - )
This component of x gives rise to a term in the polarization at the

frequency 3w given by

L

v E3 cos 3ut

p(30) = o x, = 3=
4 \m

(5? - mg)(mg -2 > (3.10)

which when incorgorated into Maxwell's equations gives rise to third
harmonic flelds. We thus have a simple classical picture of the non-
linearity.

From a quantum mechanical point of view, the discrete charge lc'catéd
et the point x 18 replaced by the charge density e ¥*(x) ¥(x) , vhere
¥(x) 1s the wave function in the Schrddinger picture. In this picture
the motion of the center of gravity cf the charge density is equiveient
to the motion of the particle. Wo may imagine the motion of this charge
cloud oscillating in response to the applied fields as setting up a dipole
moment of the form

p==f**exvdx . (3.11)

The characteristics of this motion will determine the linear and nonlinear
character of p . The exact motion of the charge cloud, and hence p ,
is determined by the time evolution of the wave function which in turn is
governed by Schriédinger's equation.

C. QUANTUM THEORY OF THIRD HARMONIC GENERATION IN A TWO-LEVEL SYSTEM

The quantum system to be considered will be taken to consist of two
levels with energiles El and E2 in order of increasing energy where
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the natural frequency 0 is defined by
R = (B, - E)/8 , (3.12)

as 1llustrated:

FIG. 3.1--Energy level diagram for two-level system.

The Hamiltonian of the system is assumed to conslst of the unperturbed
‘term Ho and an interaction term H’ , such that

21=Ho+ll' »  (3.13)

where the matrix elements of the two are given by

(1,1 = B
(2B |2) = E, - (3.14)

(LB, 12) = 2Bdg2) = 0
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and e
Q2= -uE
M1 = -us
, , (3.15)
QR 1) = 2M [2) =0 ,

vhere E 18 the total electric field present. The above matrix elements
are taken in the energy representation in which 3%) is diagonal and the
phases of the unperturbed wave functions are taken so as to make the dipole
matrix elements real. It is assumed that the type of interaction’is induced
electric dipole; hence we have the zero diagonal components of d . In
order to make this apply to the magnetic case one would simply change E

to H and restrict the rf magnetic field to lie in a plane normal to the
de fleld.

Equations of Motion

The equations of motion for the two-level system in the density matrix

notation are

e
(oyy - ) 10

by + = = = Bl ey - My ppp) (3.16e)
T, 11
(P, = o) 1 . .
L 22 22 - com— -
Pop *+ =— @y 0y - ¥ 0,) (3.160)
T 1%
o] 1 ’
. 12 _ )
T, 15
o] 1l p
. 01 _ i
T, 1%

where Tl is the longitudinal relaxation time, T2 is the transverse

relaxation time, and pil and pge are the values of the disgonal elements
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of the density matrix in the absence of applied radiation rields.(l) In
general, p;_l and 922 vill be given by the ‘Boltzmenn factor when the
system is in thermal contact with a reservoir. If the system is at a
temperature T , then we have |

Bl

22 = P11 ® , (3an)

0

vhere k 1s Boltzmenn's constant.

Let us assume that there are present two electric fields: +the first,
El cos wt , is the applied fundamental field at the frequency w and is
assumed to be strong; the second, E3 cos (Bwt - ¢) s 1s the third harmonic
field which, for generality, msy be arbitrary in origin but in the case
ultimately considered, will be generated from the nonlinear properties of
the molecular system. The total field E 1s then

E=E coswt +E, cos (3wt - ¢) . (3.18)

1 3

The parameters f may be introduced in the following manner:

l"'El
B =— (3.192)
2n
)
gy = =2 (3.190)
21
WE;
By=—=2e if (3.19¢)
21
RE
iy - —2 e , (31%)
2n
(l)A hrief explanation of the relaxation times Tl and T2 is given

in Appendix A.
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where now the strength of the interaction, UE , is measured in the units
of angular frequency. The conjugate 1s left on B, (even though the quantity
1s real) in order to retain the symmetric form of the resulting equations.
The interaction Hamiltonian is then

, 4

};112 =2$21 ==X (Blem + B’{e'm + BBeim + B;e-im,) . (3.20)

Substituting (3.20) into (3.16) gives

e
. P11 ~ P11 1ot | x -lot 1%t . % -1k
By + —-;-——- = 1(1:321 - °12)(Ble + ple + f:3e + fe )
1 (3.218)
P, - Po
Pop + 221- 2 - 1pyy - £y NBy ™™ + Bl 4 ﬁB‘*iBwb + ﬁge-iawt)
1 (3.21b)
[o]
fip* _‘_JI;?_ - 10,5 = 10y - £y )8y + preF 4 ﬁBei% + Pge )
2 (3.21¢)
. P -y * . i -
Py * -Tii + 100, = 100y - py) (86" + BT 4 Pye s B3e el
e (3.214)

We now look for e steady state solution to the at ve set of equations.
The usual procedure in solving these equations for the interaction of
rediation with matter is to assume the diegonal components to be constants
and the off-disgonal camponents to vary as eiiwt « Such an assumption
leads to the usual linear or single quantum interactions. In order to
include the effect of higher order interactions involving more then a



Sa e e O L

single quantum, a more general solution is required. Thus, we assume the
follovwing:

8y =2+ ).](j) R N LSQ) o120t

) et ) et (5
Pop = Yo * }‘ég) . "( ) et

) et O ()

Pip = 112) Lk ){;l) e~ 1% 4 xg) X% xJ(_;3) e 1% (3.220)

Ppy = g) et 4 xéll) xg) 13, )é?) ™12, (3.220)

where the diagonal components contain only even narmonics and the off-
disgonal components contain only odd harmonics. The superscripts denote
the corresponding frequency dependence and the A are complex constants.
Terms up to third order are kept in p12 and 921 since these will be
seen to give rise to the third harmonic generation (fifth order terms would
give rise to fifth harmonics, etc., but only third hermonic generstion is
here considered). Although terms to second order in the diagonel components
would be sufficient to show third harmonic generation, there is a frequency
detuning effect, to bpe discussed later, vhose correct magnitude requires
the inclusion of the fourth order terms in pll and p22 . It can be
shown that even order ferms in the off-diagonal components and odd order
terms in the diagonal comppnents ere related and vanish identically. (1)

(l)All the coefficients of these terms could be linearly relsted to
the average or dc¢ component of the off-diegonal components lia and 151 .
From the random phase argument of statistical mechanics (see Appendix A
for references) the off-diagonal components of p are identically zero
in equilibrium; hence 152 = lgl =0 .
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From the basic relations gzoverning the density matrix for a two-
level system,

Py +Pyp =1 )

and (3.23)
*
P1o = Py ’

the following relaticmships between the constants A may be derived:

AL+ A, =1 . (3.248)

((2) L (2) _ o

MY My (3.24p)
e 3t
A1 () (3.244)
A2\ (83)” . (3.2k)

After substituting the assumed solutions (3.22) into the equations
(3.21), using (3.24b) and (3.24c) and employing harmonic balance, the
following elgebraic equations are found for the diagonal components:

N\,
11 11 (-‘-,(gi) (1)) B + (1( -1) _ ( 1)) By

iT
! (3.25a)

+ (léi) (3)) 53 + (k( -3) _ §;3)) §3
(2o - 39 243 = 6F) - 2wy + 0EY -G
(3.250)

ORI
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(a“;—lngl - - ) e - 6D L)
(3.25¢)
- 057 -,

PEN—————— T

(b - '1%1‘) XS{) 121 xﬁ’) By + (km xég))ﬁl (3.254)

(4o + ;_1) )‘i;f’) - (‘1) ){;1))5; - ()‘§;3) - 4;3))%“. s
(3.25¢)
and the off-diagonal components:

1)

* L)
[0 - @) + 7 2 ){2 x 2)%) B, + 241 B + 2x( -2) By (3.25¢)

(2 + o) - —] 1(1) =Ap, + ax:(f) By + 2)\52) 5 + 2 xh B*; (3.25¢)

) (o )

(@ - ) + ,—}2-] .\g) =48, + 2A1L' 8, ~ eng ,sf" {".25h)

[(Q + %) - %;] )‘g) = A+ ax_ﬁ) B, + 2)31‘1 By ,  (3.251)
where

AE Hol - lga . (3.26)

The quantity A represents the aversge difference between the diagonal
components when the system is in equilibrium with the radiation fields.



The quantity A may be defined as the value when the system is in
thermal equilibrium with its surroundings:

1" 22 - (3.21)

When multiplied by the tpi. mmber of particles, N , the quantity NA

repregents the average prm o .on difference n, - n, where n, and n

are the nuabesr of paitieloas in Lu» lower and u;per itates, res;ectively?
By usir~ =,  1%9.25b; .o .sb (3.25e), the dlagonal components may

be elimine*ed from (3.25f) ./ -ourk {(3.251) to yield a set of equations

involving only the sif-alagenal te-ms. In order to simplify the algebra

somewhat, 1t shall be assumed that

1
L >> ‘—'I]; ’ —T ’ (3028)
2 1

which physicelly is equivelent to saying that the linewldth of the transition
is much less than the frequency of operation. For a gas, this implies that
the operating pressure is not too high. Upon using (3.28) in the diagonal
equations and assuming B3 << Bl , the off-diagonal equations become:

PR3 * %
Q-m+—== Blal il A1) Zap o+ st} NS PiPy a3) _(3)y
® T 12 S 31 o 2L 12
2 (3.29a)
BBl 17 (1) ‘3161 (1), EIBZ (3) (3)
[Q to- - 'j My = AR - T MG (a77 - )
w T w w
(3.29b)

20 T w

3 BB
[“ L - "'] 2D - apy+ 220l ) Goase)
2

3 X
[n +3m-— g6l - —] A3 - ap 2208 -2 ie0)
2w T2 w

-
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It will be shown later that the harmonic polarizetion is directly
proportional to 12) ~and (3) + 8ince ve are interested in those
conditions giving rise to & large third harmonic polarization we may
examine Eqs. (3.29) for conditions consistent with this goal. The
maximization of the A's will be consistent with the minimization of the
determinant of the coefficients in (3.29). From an examination of this
determinant we see that there are two frequency regions where such a
meximization may occur, nemely o~ Q and w~/3 .

These two situations correspond to the fundemental frequency near
the naturasl transition and to the case where the third harmonic is near
the natural frequency. We shall consider these cases separately, thereby
simplifying somewhat the mathematics.

D. SOLUTIONS TO THE QUANTUM MECHARICAL EQUATIONS

1. Solution for Case I: w =~ /3
Let us assume that the fundemental or pump frequency is approximstely
one-third of the natural transition frequency, w = Q/ 3 , ond that the

fundamental fields, measured by Bl » are sufficiently strong to cause
appreciable harmonic generation, yet not so strong thet the assumption
Bl <w is invalid. The upper limit on the fields imposed by the latter
restriction is approximately

E (volts/cm) < 3,500 v{kMc) , (3.32)

for a system with a dipole moment equal to one debye (10"18 esu) . Sirictly
speaking, the approximations involved in the solution will be vglid to the
order (51/9)2 which will be less than 0.1 if we satisfy the coudition
(Bl/w) <1 . This assumption is mede in order to make the mathematics
tractable.

By combining (3.29a) and (3.29b) and solving for 1§é) end xéi)




in terms of Bl s léi) and lgg) ; we have

i pYp
a+o-—|lap + 11(1(3) ).(3))
(1) _ T L
M2 wa— Y e 0
Q-m.,.._l_l...__a_._m_ 171
w» T
and
1 pYp
a-0+—|lap + 1l(x(3) g))
R - - . (3.34)
BBy 1 BB, 1 B B% '
1Py PR L R B i i
w T w T2 o

It is to be noted that although l&é) and léi) are nonvanishing to
first order in B, , exprzssions (3.33) and (3.34) include terms up to
fifth order in Bl (the next nonvanishing term} and also retain the term
l/T2
necessary to retain these smaller quantities in order to evaluste expressions
(3.258) (which will be found to describe the phenomenon of saturation) as

compared to Q , even though by assumption, Q >> l/T2 . It is

meny of the first order terms cancel. For the evaluation of other quantities
the higher order terms may be dropped. Simplifying (3.33) and (3.34) by
dropping terms of the order of l/'l‘2 and keeping only first order terms

in Bl glives
AB
S (3.35)
Q-
(1) %P
k 2 (3036)
2l 2 +w



and the derived gquantity

-2 AB
x&) . xg) - ?—a?'l— . (3.37)

The third harmonic coﬁponents of 112 and )21 mey be found by

substituting (3.37) into (3.29c) and (3.294). These ere

B ; Bi
(3) . g 02 -0
112 A 3 Blsi 1 (3-38)
Q- 3w + -
an T,
2 ai
B -
(3) _ 3 9% -4
Ay o= A TEE 3 - (3.39)
2+ 3w - -—
a1,

We are interested in the case wher® o ~ Q/3 . Exemination of (3.38) end
(3.39) shows that lgg) will be larger than léi) by a factor of the
order (2 + 3w)/(? - 3w) , which for these conditions will be very
large. We thus drop 122 in comparison to kgg) .

The condition for maeximizatisu of ){2) will correspond approximately

to the venishing of the real part of the resonant denominator of (3.29) or

3 B P
o0

=0 . (3.540)

Q- 3w+

By solving for the ‘requency «w we obtain

n( 2 ) (3.41)
w = - l.'——-BB ) 3._1_
3 % 11
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or after defining an effective natural frequency 0’ by

9 p.BY
9’ = n<1 + -—-ié-l-) ,  (3.42)
20

we have the condition for optimum interaction
w=0a’/3 . (3.43)

The new frequency 2° 1is the effective natural frequency under the

conditions of a strong applied field at & frequency near Q/B . In
terms of the quentity Q° the components of the density matrix at 3w
are '
2 B3
B - —..];—
3 2 2
- - w :
xg) = A . (3.4ka)
Q7 - 3w+ T
2
and
(3) 4
121 =~ 0 . {3.44D)

From expressions (3.33), (3.34), (3.44) and the defining relations (3.24d)
and (3.24e), the off-diagonal components of the density matrix are known.

Next we must evaluate expression (3.25a) whichyas will be seen,describes

the phenomenon of saturation. Substituting (3.33), (3.34) and (3.44) into
(3.25a) gives

0 e
MMy l’ﬂlﬂi
AL LA T
17 T (8 - o)
* i (a3a4+ 3*35)
2 PPy T 2 (PP + P Py

i ] N (3
RETY-TXRPR T TRY el B
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If we consider the limiting cese where the harmonic fields generated are
small, 53 < ﬁz (02 - 2)'1, thie expression becomes

0 _,e : 3
My hu‘iA ’obbl (B,87) (346)
1m 5 m§)§[1 + 'r"’ (a 3m) 1 |
Now by using the fact that )‘gl + ).22 =1 and ,\.]e_l + k;z =1 , vwe may
show that
X -5 =2 (a8 , o (3.87)
wisre
£ =25 -2, , (3.48)

with )\l, ani? ;;2 being the thermal equilibrium values. Substituting
{2.47) inte {3.45) end solving for A ylelds

-

ok e 81, 3
Lb"l‘i. 512 + ) (Blal) 5
(0% - o®) (a -_w) (1+T§(n’-3m)]

»n

A

,,,.,_A—‘-
v

+

3 3 -1

2T, BBy b, (B B3 + BB, (3.49)

1+ @ - w2 (@2 - P T P
2 = / 'm)[l'.' 2(‘2 )

Jpen using the same assumptions leading to (3.'4—6) we have

. [ Blﬁl 81, (8,8})° .
* N ‘

“ 02 - ) (82 - )2 1+ 0’ - 30)°]

(3.50)
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With the knowledge of A given by (3.49) or (3.50) and the off-
diagonal elements (3.33), (3.34) and (3.44) we have sufficient knowledge
of the quantum system to calculate its response to the fundamental fields
coud the exteni to which 1t ' 11 generate the desired third harmonic fields,

for the case o=~ 8/3 .

2. Solution for Case II: w=Q
The second case of Interest is one in which the frequency of the

fundamental radiation is near the natural transition frequency, wm=~ g .
Here the third harmonic fields will occur at approximately three times the
natural frequency in contrast to the case previously considered where the
output was near the natural resonant frequency. To find the response of
the system under these conditions we shall solve Egs. (3.29a) through
(3.29d) under the new assumption that ® ~ Q along with those previously
used, Bl >> B3 and o > l/‘I‘2 .

First of all consider Eqs. (3.29a) eand (3.29b) for the fundemental
components of A and }‘21 « B8ince we have chosen w =~ it is clear

12

that kg) will be much greater than ).‘,(2]1') and hence we may neglect the

latter quantity. Considering the solution to (3.29a) to first order only
(neglecting the much smaller fifth order term) gives

(1) “h
= . 3.51)
2 B.pY 1 (
Q - m+-—l-}-+ —
W ’1‘2

By setting the real part of the denominator of (3.51) equal to zevo and
defining the solution to the resulting equation £ one obtains

AB
G e o (3:52)
Q -+ T
2
where
B, B*
-4 . (3.53)

2 =6a(1 +
h
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The quantity §° 1is the effective natural frequency of the system under
the influence of the radiation fields applied near the natural frequency
of the system.

Upon using expression (3.52) for kgé) , and xéi) ~ 0 in (3.29¢)
and (3.294) we obtein

B2
B‘ -
3 afa” L
(3) ( "ot
Ny = - A (3.54)
1
29 -+
T,
2
By - —— 1
Q(Q -+ T_)
VLN 2 , (3.55)
bo -2
T,

vhere in all nonresonant terms we have set w =Q and dropped terms of

the order of Be compared to those of the order of Q2 . Substituting

(3.52), (3.54) and (3.55) into (3.25e) gives

o} e * 3
Mty 2t 488 0S4 B3]
iT —1+T2(Q”-w)2 hﬂz(ﬂ”-w-i)
1 2 T,
(3.56)
%53 (
___3aem
2, .. i
L (" - o+ -T;

The first term on the right hand side will predominate, the last two
being of the order of (Bl/h)h smaller than the first. Using (3.47)
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1+ Vl'g(a"’ - @)®

vhere A&° is defined by (3.48). With expressions (3.52), (3.54), (3.55)
and (3.57) we have the density matrix for the case of pumping near the
natural frequency.

With the knowledge of the density matrix in :che two cases of interest
e aré nov in a position to determine the reaction of the quantum system
on its surroundings, nemely a resonant cavity.

E. MACROSCOPIC POLARIZATION AND CAVITY REACTION

We turn now to the questiou of the dynsmics of the electromegnetic
(E-M) field and in particular to the reaction of the quantum system on
it. PFrom classicel electricity and megnetism we know that the electro-
megnetic fields may be derived from ® , and A , the scalar and vector
pbteﬁtials s Or if the charge density is zero a gauge may be chosen where |
=0 end both E and E mey be determined from the relations '

--1 94 E-cuip . (3.58)

The vector potential A 1is determined from the relation

1 @2 b
PAem: —m A =e—] ,  (3.59)

vhere J 15 the total current density and is composed of several types
of curreuts as follon:(l)

(Lgee Rez. =2, p. 117.



(a) True curreats: ‘ldemtical with'tvensportation of true charges.

(v) Polarization.curremts: ocurrents that erise from the change .of
polarization with. time.

(c) Magnetisetion curremts: stationsry currents that flov within
regions which ere inaccessible to observation but which might
give rise to net boundary or volume currents, due to imperfect
orbit ce’.cellation on an atemic scele.

(a) Convective currents: currents due to the motion of & medium

&8 a whole,

1. Macrescople Polarizstion

Our interest will be in polarization currente, (b), since we are
coneidaring electric dipole effects in bound states of atoms and molequ,‘e‘a,‘
not free electrons, and bulk motions clearly will not be of interest. The
polarization current which acts as a source for the B-M fields is given by

I-2¢ ,  (3.60)

vhere P 1e the polarization or the macroscopic dipole moment per unit
volume.

The macroscopic polarization, P , will be equal to the expectation
value of the polarization for a single atom times the number of systems
per unit volume, N :

P=Xp="N . (3.61)

The expectation value of a single dipole eystem_(g) may be calculated from
the density matrix p by the relation 1

) = Tr (op) ,  (3.62)

vhere p and u are the matrices of the density matrix and dipole moment

(L)gee Appendix A for the derivation of this relation.

. e o in e e e ro——————




operators, respectively. The vector notation is to be interpreted as

~

() =T (p 1) > (3.63)

!
with similar relations for “y and B, . In the representation used,
the matrices are

P11 P12 P
p= ) b= ;  (3.64)
P21 P22 21 ©
é and the trace of their product is

By the previous choice of the phases of the wave functions we have K1o

Ky = B ; hence (3.65) reduces to

where now we assume that the direction of the quantity u 1is that of the
fundemental field E . Returning to the definitions of Pio end p21
in terms of the A's and substituting into (3.61) gives

p =)+ a1y & 4 1) 4 (01 ot

i )‘12) + 1(3)) ei3tl’b (}‘](.; ) + )‘( 3)) . (3.67)




By using the following definitions

%) = m(dd) + (D) (3.68)
p{) np(xgl) «25) (3.680)
Pg") = Nu(kg) + x(3)) (3.68¢c)
Pg') = Nu.(l( -3) + 1( 3)) ,  (3.684)

the polarization becomes

P = P:(L"') 1ot Pg-) o it pg*) el | Pg') "3 (3.69)

displeying components at both the fundamental and the third harmonic.
The megnitudes of these components are related to the quantum mechanical
properties by Egs. (3.68).

2. Cavity Reeaction
To be specific, in the problem at hand, it will be assumed that the
quantum system 1is placed inside a cavity which is resonant at both the

fundamental and third harmonic frequencies. The resonance et the funds-
mental is provided in order to achieve the required field strengths st
reasonable applied power levels. Provision of & resonance at the harmonic
matches the impedance of the source Lo that of the outside world, increasing
the power generated by the nonlinear action of the sample.

In order to calculate the power generated by the component of the
polarization et 3w we must first determine the fields it sets up in
the cavity. This may be formally expressed by the relation
1l

¥. =P

’ (3.70)
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WP

vwhere Xc = Xé - 1X’é and the quantities E and P vary as o
The quantity Xc is called the cavity sueceptibility and relates the
field in the cavity to its source, in this case e time-varying polar.ization.
Let us assume that the polerization in the cavity is a vector function
of the coordinetes of the cavity, g(;) ; and let the orthonormel eigen-
functions of the cavity be ym(‘z;) . To simplify things somewhat let us
further assume that there is just one resonance near the frequency w ,

denoted Oy end the loaded Q of the cavity is given by Qo . By

letting the field E(r) be given by

E(z) = E u(x)

» (3.7}
it can be shown that
hmw? fOPVl/2
E = ,  (3.72)
g law,
Wy = + ~—
0 Q
0
where
1/2
B(r) - 20(5) av =P £, V . (3.73)

cavity

The quantity fo is a filling factor and V

is the volume of the cavity.”
In this case from {3.70) and (3.72) we have

1 b £ vi/2 i
. — TR
”
Xc w- - w? +,__JQ
%
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It should be pointed out that in all previous expressions involvirg

the flelds El and E3 » these are the fields at a particuler point in

space and are not to be confused with the rormalized quan“*+y tu
3. OQutput Power

The power coupled out of a cevity where the fields are generated from
within is given by the relation

Pout =

w. W
2 . (3.75)
Q

e

where wo is the angular frequency of the output radiation, W is the

energy stored in the cavity, and Qe is the external Q (which for
optimum coupling equals the Q of the source).
the cavity is

The energy stored in

Ve g f (2 + B2) av , (3.76)

cavity

where the bar signifies a time average and we assume_ ¢ =1

» =1,
o

the sam2 as for free space. At resonance we have E- = H2 , 86 (3.76)

becomes

) —_
W= f E® av . (3.17)
cavity

If we assume that the third harmonic field is written as the product of

a function of time (giving the amplitude) and & function of space (the
normel mode function)

E, = £, oMt - B) L gy 100t - g, (318)
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vhere @ 1s an arbitrary phase factor, then we have

1 = =
Wi=2n B3 By

. (3.79)
Combining (3.75) and (3.79) gives
(3)E, Ex
P (%) = —2-3 . (3.80)
2n Qe

By using the results derived so far we shnall now calculste the harmonic
power out in the two cases consldered.

F. OUTPUT POWER AND REACTION AT THE FURDAMENTAL

1. Case I: o= 0/3
8. Output Power

We shell now e¢valuate the harmiornic power for the case where the epplied

fields are at a frequency epproximately one-third the natural transition
frequency. In this cese combining (3.68e) with (3.33) and (3.34%) and (3.68¢)

with (3.44) and (3.45) gives, for the dipole moments,

gy
2Nu Q[A B + 21 (xg) - lg))]
(+) _ [
Py = = ,  (3.81)
1 2 2
Q - w
and
3 ;}2
Q. .
S -
P{*) - g —— 8= o (3.82)
R

.ol .
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The component of the polarization at 3w , Pg*) , 18 seen t9 consist
of two terms; the first is proportional to 63 (or to EB) and the second
is propcrtional to Bi (or Eg) . They have somewhat different character-
istics. ,

The first term, proportional to 33 , 1s the polarization induced in
3 ° It is the linear, first order
response of the system to fields at the frequency 3w such gs would occur

response to the hermonic field E

vere : a signal at this frequency applied to a system with a natural frequency
Q° . As such, this component of ng) will have the rame spatial dis-
tribution as the normal mode fields in the cavity.

The second component of P§+) » broportional to Bi , is the
polarization generated by the nonlinear action of the media; it is this
component of the polarization which acts as the source of the third harmonie
fields in the cavity. The spatial distribution of this component will be
equal to the cube of the spatial distribution of the fundamental filelds
(P3x « Eix 5 etc.). B8ince this spatial distribution is not the seme as
that of the other component of Pg+) one must allow for a different filling
factor. Let us denote the filling factor for the first component by fl

and that of the second by f, . Then combining (3.72) and (3.82) gives

2
- bn 1 Q, WA oz, V2 g3
By e - 12q i [leB R
[1+——1(3w-m3)][9'- 3a>+——] a2 - P
, 3 T2 (3.83)

wvhere , 1is the cavity resonant frequency near 3w and Q3 is its

3
loaded Q . Upon moving the first term on the right to the left, using

the definition of B3 (3.19¢c) end rearranging the denominator slightly,
we have

2
by p Q3 RA T, £,

- _1¢
E3e l+

129, '
(30 - a)3)] [1 - 1T2(n’ - 3:»)]
w,

ﬁ[l +
3

Bup @, NA T 2, si yi/2

[1 + ﬁi (3w - mB)][l - 1'1'2(::’ - am)][na - u)a] ‘
@ (3.84)
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. (3.85)

ar sbgorption coefficient,
available. In Appendix D,

L —— o «'M

s (3.86)
i
y S . (3.87)
g y o o
| /
/ T
S — ., (3.88)

| - 1-17, (a0 - 3m))
7~
/.

*ct; of seturetion and is defined

. (3.8)

ety I

N -

ring a quality factor for the




Prom Bq. (3.50) we find

] 8= 3
’ 4 g 6 8e,py)" T,

lre® -6 (0% - PP e B0 - )7

(3.90)

As explained in section D.l, vwhere it was derived, this expression 1is
an approximation in the limit that BB is less than the theoretical
maximum value, which will be the case in any practical situation. A
more exact expression may be derived from Eq. (3.49). In section G a
more detailed discussion of saturation will be given.

By using (3.80) and (3.88) we find that the power coupled out at
the rsrmonic is

2 2 6
b2 g fgslv

(3w) —E—
: W @l e 50 - 1)) (0% - )P
P__.(3m) = .
R t Q 2
. 141—2 (3% -a,) 8¢ l
w3 3 1
2nQ, +
Q Q[ - 1 T,(0 --am)ll

(3.91)

The sbove expressions, along with the subsidiary defining conditions
(3.19a), (3.42), (3.85), (3.87), (3.90) give the value of the harmonic
power coupled out of the cevity in terms of the operating conditioms,
(o, El) » the properties of the cavity (Qe , QB » Vot , 5, '¢n3)
and of the quantum system (@ , u , Ty T y) . It then completely
defines the generation of harmonic power due to the nonlinearities

in the quantum system in terms of the familiar linear properities of
the system. Let us simplify this expression and put it in a form which
is more easily understandsble from e physical point of view.
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Tf we examine the denominator of (3.91), .using the definition of
loaded Q , l/Q3 = l/Qo + l/Qe s Where Qo is the unperturbded cavity

.Q , we see that it is of the form

2
1 1 1
QlF=+5+ (3.92)
¢ q0 ‘Qe Qaample ’

vhich is that of a cavity (Qo) coupled to the external world (Qe)
with an additional loss mechanism Qs ample The value cf r‘\.sample
describes in effect the "source impedance”™ of the sample at the frequency
3 . The exact form of these quantities in (3.91) shows that they are
reactive as well as resistive. That arises from the fact that both the
cavity and the atom ara resonent and will have a reactive component if
the frequency 3w does not coincide with their resonence. Let us assume
that the cavity is tuned by varying its resonant frequency w3 such that
the reactive or imeginary components in the denominator cancel. Then the
denominator becomes

1 1 8 fl 2
q |—+—+ > 5 . (3.93)
Q 9 Qs[l + 2(9 - 3w)°]

Taking for the moment 8 =1 , i.e., no saturation, unity filling factor,
fl =1 ,and 3w =0" , the effective source impedance of the sample is
described by ~1/Qs . This quantity is equivalent to the familiar "msgnetic

Q ," of the standerd maser terminology and may be defined in the usual

manner as
1 (power lost in sample)
Q " 2n (frequency) (energy stored in cavity)
sample
- Flost . (3.9%)
mow

If the system's population distribution corresponds to positive temperatures
(more in lower level than in upper), then (}'?.l - lge)? 0 implies A> O

- 68 -



e

[P

implies Q' > 0 and hence a net loss or attenuation of the signal at
3v 3 vhereas if populations are inverted, Q, 1is negative and the
system acts as a negative resistance. The possibility then exists for
oscillations to occur if l/Q! becomes sufficiently negative to cancel
the losses, i.e.,

1 1 1
-Fcete . (3.99)
O

This, of course, is the familiar condition for start oscillations in a
maser oscillator.

Let us now combine the cavity Q and the sample Q into an effective
source Q defined by

1 1 8 fl
———— 3 . (3.96)
‘ ) 2
Q Q 9 [1+15(8” - )%

source

Expression (3.93) then becomes

2

1l 1
Y ——] , (3.97)

€ [Qsource Qe

which is maximized for Qe = Qsource 3 under these conditions we have
L | Qsource
1 112 =T * (3.98)
Qe a + 6—] L
| "source ) ) nax

Referring to (3.91) we see that the power out under matched ecnnditions,
Qsource = Qe » is directly proportional to Qsource « If the sample

Q 1is positive, indicating a normal population and hence loss, the source
Q is reduced, lowering the power out. If the population is inverted,

Qs < 0 , then the source Q will increase and the output power will

increase proportionally. We thus see that the question of population
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inversion is importeant in determining the magnitude of the emitted power
through its effect on the source Q bdut is not required in order to
achieve harwonic genaration. From a qualitative point of view ve see
.that the system behaves first es a nonlinear element, generating third
hermonic fields, and second in & linepr manner, either amplifying or
attenuating the signal depending on whether it is in an inverted or normal
population state. Clearly, the latter linear process, to be important,
requires that an allowed transition be near the output frequency 3w as
demonstrated by the resonance denominator in the sample term. In the
case herein considered where 3w = this 1s satisfied.

We shall not pursue the question of population inversion any further.
It will be assumed that the system is in a normal poj .iation state,
QS >0 , and that the external Q 1is matched to the source. Then using
the definition of 51 ,» Eg. (3.91) for the power out becomes

L 2
8 2 6
(30 )(g') (-Q:) f2 Q»aou;rc:e El v
Pout(30) = ‘ . (3.99)
128[1 + Tg(n' - w)2)(a? - &°)?

Finally, if we assume that conditions are satisfied such that 3w =0 ,
there is no saturation so 8 =1 ; and that the unloaded Q of the
cevity, Qo , 18 much larger then the simple Q , QB , the expression
for the power out simplifies to

P i(30) = 2 . (3.100)
128x n3

Before discussing in detail the expressions for output power ve shall
calculate the reaction of the sample to the fundemental fields and then
perform the calculations for the case where w =~ i , which will give
similar results to the above.
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b. Reaction st he Pundsmentel

The power supplied to tlhie cavity at the fundemental may be dissipated
via three main mechanisms. First, there is the cavity loss which is due
to the finite conductivitydf.thewslls and is represented by the unlosded
quality facter of the cavity, Q, - Becond, there may be a loss due to
sbsorption of the fundsmental by the atomic system when there is an atomic
resonance nearby. For the case at hand, ® =~ Q/3 , this loss will be
very small. Both of these loss mechanisms are first-order in nature, the
pover absorbed being proportional to the energy denpity Bi « They may
be lumped together in an effective first order Q ," Q(l) . The third
source of loss is third~order in nature and is that power going via the
nonlinearity into the third order process. This component of the power
supplied by the fundamental generator goes into cavity losses, molecular
sbsorption, and output power, all at a frequency 3w . This form of
loss, reflected by the nonlinearity, is familiar from the theory of
parametric emplifiers.

To evaluate the effective Q of this coupling, we may proceed in a
manner similsr to that yilelding the output power at 3w . By using
(3.72), (3.81) and allowing for an external source, we have

‘ p16] .
s 1 asien 2 B0 0
= =—. D < + (external source term) .
2 X a2 - of + 286"
e 1Py (3.101)

Upon substituting for )'.'(Lg) and )éi) , rearranging the expression, and
dropping higher order terms, we obtain

1l 4eos Bl{ 5133
E, e 33 - "% .|l (external source term) .
Q ©Q, [(0° - 07)" 2% - ) (3.102)
The effective Q of the third order losses, .Q(3 ) s is then seen to be
1 uras | a’{ BB
&) Rl P YR 2 > +(3.103)
Q ®Q, |(8° - %) 2(0° - o)
Tl =




vhere £ is the filling factor st the fundsmental, Q' is the samplé

Q , (3.85), and 8 1s the saturation parameter. As expected, the
magnitude of the reflected loss is dependent on the fundemental field
strength ,(slz making the loss, nﬁ/& , 80 88 ‘(:1)6 . The maximum
value of 1/Q‘3) will occur for B=1 , f=1 , and -53«‘ag/na-u2;

it 1is
( 1 12 a’{ (3.100)
7 T = . (34
Q" mex Y (@ - &%)

8ince Bl represents the strength of the perturbation H and 0 18 of
the order of ﬂo , the unperturbed Hamiltonian, we see that l/Q(B) is
of the order (Hllﬂo)h times 1/qB . For practical fields [see Eq. (3.32))
this factor will be small, demonstrating the necessity of either an extremely
high cavity Q or a large value of l/QB in order to obtain any sort of
efficlency; otherwise most of the input power will be wasted in cavity
losses. 8uch a consideration is seen to limit the usefulness of this as
8 traveling wave device where the field strengths will be quite low for
reasonable power levels. |

We shall now proceed to calculate the expected power in second case,
where the fundemental fields are approximately resonant with the transition

frequency w8 .

2. Cease II: o~0

a. Output Power

Having gone through a similsr calculation for the other case, we shall
follow the seme procedure, adding comments where there are differences.
From (3.68a) and (3.52) we have

Pg*) == =~ ,  (3.105)




and from (3.68¢), (3.54) and (3.55), we have

3
O . [ 20 L —r
3 m[m Tl Pt e -en) - O

By substituting this in the expression for the generation of cavity fields
(3.72), assuming that Q >> l/'1‘2 , and tuaing the eavity so as to tune
out the reactive component of MB » We have

3‘,%
1 3¢£. 8 8BHf, B
Ige-:l¢[ 1 ]= 2 P

lyo® Q1 - 1 7,(8" - @)]

, (3.107)

where f, end f, are the filling factors, Q 1is defined in (3.85),

Q3 is the combination of unloaded cavity and external Q's , and 8
for this case may be derived from (3.57) end is

1
8 = — . (3.108)
] T, PR
.+ 3
1+ 'rg(n” - w)
By using expression (3.80) for the power ovlzt , we obtain
8 ¥[n 2 ag v
BN\ == 5
(30) ./ \m 1611 + T(0" - 0)7] (3.109)
P = . . 09
out 1 3z, sT
2nQ, —+ —_
oy (W)’ q,

In this case, because of the factor (1/1m2)2 , the contribution
to the source Q from the sample will be very small and it may be
neglected in comparison to the cavity § , for reasonable velues of
the latter. Physicelly this i1s due to the fact +that the output fraquency
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corresponds to three times the natursl transition frequency and there will
be negligible self-absorption, in contrast to the previous cass whers the
output occurred near the natural trensition and there was absorption.
Optimiring the output by setting Q, = Q, , we have

R
(%) (;) (—Q—-) 2o, v
3m) = = \

13 alb

P

out . (3.110)

.2 (1+ 'rg(n” - m)2]

Upon assuming Q2“ = , 8 =1 , we have the approximsate expression

4 2
1 2 6
3(%) (Ez;) 25V
P (%) = . (3.111)
. o133

n

b. Reaction at the Fundamental

As before, there will be three main contributions to the loss at the
fundemental: the cavity losses, the first order absorption, and the third
order losses which are reflected by the nonlinearity. The cavity losses
will be the same. For this case, however, the first order losses in the
quantum system will be much larger than the third order Josses, due to the
proximity of the natural resonent frequency to the "pump” frequency. The
value of the Q due to the first order losses in the quantum system is

1 s 1
Qm Q 1+ Tg(ﬂ" - m)2

(3.112)

As virtually all the third harmonic power 1s dissipated in the cavity and

in the usefnl load, the third order Q will be such that it will give a
loss equal to twice the output power; (1) its specific value will not 1lnterest
us here.

(Dﬂhen the output is matched, = Q8 , the power dissipated in the
cavity equals the output power and hence th® total power dissipated at 3w
equals twice the output pover.

- T4 =



fundsmental and at the harmonic, mbomnvmmemideu‘thoprwf,”
d’mtmthemthumucmrouttoraﬂnnimmrlml he

Our interest in the values of the molecular Q's , both at the

problds is different.in the two cases.

Por the first case considered, o= 9/3 , the quantum system presents
a large, first order loss at the harmonic, while at the fundamental there is
only & much smaller third order loss. An increese in the cavity Q at .3m

is seen to be less valuable than a corresponding increase in the Q at o:'

since the effective maximm Q at 3 is determined by the sample Q ,
Qs At the fundemental, however, the field in the cavity, El y Will be
determined primarily by the cevity Q , Qo , aa the third order losses
of the quantum system will in general be less. In this limit, Eg = Qg 3
and the output power for a given input power will vary as the cube of the
fundsmental cavity Q . '

On the other hand, when o~ Q , the quantum system "loads” the
fundamental, limiting the effective imput Q to that presented by the
sample; very little i1s gained by increasing the cavity Q beyond this
value. Referring to Eq. (3.110) we see, however, that the output is
proportional to the cavity Q at the third harmonic, and an increase
in its value will bring a corresponding increase in the power out.

In cther words, if we consider our system to be either ™transparent”
or "opaque,” depending on whether it is nonabsorbing or absorbing, we find
that 1f it 1s transparent at the fundemental, harmonic generation is enhanced
by providing a high Q resonator at the fundamental, while if it is opague
at the fundementel, the best performance will occur for a high Q at the
output. If the system were transparent at both frequencies, then improving
the Q values at both fundamental and harmonic would result in improved
operation.

It should be noted that in the case where w ~ i even though the system
absorbs more power by virtue of its resonance near o this power is first
order in nature and does not help at all in contributing to the generation
of harmonics. It is to be remembered that only the third order losses
(st ®) contribute to the harmonic generation process. In fact, the first
order losses may reduce the level of output power through the phenomenon of
saturation to be discussed next. ‘
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G. BATURATION

In the preceding sections mention ia made of the phenomenon of qatuntipn.
In the context of this problem it describes the tendency of the population
density of the upper and lower levels to equalize under the influence of
strong rf flelds. A parameter £ has been defined which describes this
effect by relating the difference in populstion density under dynamic
conditions, A , to the difference in population density under conditions
of thermal equilibrium, A . When the population densities “11 and
122 have thelr equilibrium values, B8 takes its maximm value of unity.
As the levels tend to equalize, A tends to zero and hence, 8 tends to
zero.

In referring to the equations for the output power (3.99) and (3.110),
we see that in both cases the power depends on the square of S . Thus,
as the levels tend to equalize, and B =+ 0 , the power output falls below
the nonsaturated value.

When a system tends to saturate, this implies that its internsl energy
has increased since the average energy of the system (due to this degree of

|

i freedom) is

. 0 0
] E=0M) B+ 00
E, +E
| JBtEB oW ,
2 2

where El and E2 ere the energies of the two levels. This increase in
the energy will occur as a result of the net absorption of rediation by
the system.(l) In addition to its coupling to the radiation field the
system is presumed to be in contact with a thermal bath, this mechanism
tending to restore thermal equilibrium, with the system giving up energy

to the bath at a rate given by the inverse of the quantity Tl. & When

(l)It is implicitly assumed that we are considering a situation where
the populations of the two levels are not inverted, corresponding to a
positive temperature.

(Q)The quantity Tl is defined as the inverse of the rate at which
the system thermalizes.

- 76 -



the net reve of energy input exceeds the rate at which the system can
dispose of this energy (to lattice vibrations in a solid and kinetic
energy or other degrees of freedum in a gas) then the system begins to
saturate. We shall now ‘nvestigate this effect in both ceses considered
* and see how 1t limits the output power.

1. Saturation When o ~ 2/3
For this case the system may absorb power under two conditions. There

will be & first order effect corresponding to the absorption of power at
the fundamental in the tail of the sbsorption curve. For narrow lines one
would expect this to be small since the applied frequency is aspproximately
one-third of the natural or resonant frequency. The power absorbed in this
case would be proportional to the incident fundamental power or Ei .

The second term in the saturation is due to the absorption of the harmonic

power by the system by virtue of the proximity of its resonance §£° to

the output frequency 3w . This power will be proportional to E§ or

.

{ to El . We thus expgct the s;turation parameter to contain two tgrms,
one proportional to E1 (or Bl) and the other proportional to El
(or ﬁi.) . Referring to Eq. (3.90), we see this is so.
Let us now calculate the field strengths, Bl , at which the saturation
takes the value S = 1/2 . Assuming 3w =Q° , the first order term would

cause saturation when

or

Bl e P (3-113)

» Bg s . (3011“’)



For the assumption '1‘1 ~ Ta » valld for a gas at microwave frequencies,
and the assumption § >> l/T‘2 s the third-order term is seen to be the
primary source of saturation.

At the onset of saturation the source Q , (3.96), temnds to Qo
end the expression (3.99) for power out varies as 82 « For the predominant
third order saturation, Eq. (3.99) tends asymptotically towards

0

(3w) = const. 1 W s
(1 + const. El)

Pout

which shows that the power out actually decreases in the limit of large
1
2. Saturation When w =~ Q

In the second case, w={ , the strong fundamental fields, near

resonance and causing first order absorption, will dominate the saturation.
From Eq. (3.108) the condition for saturation is

Bl s h—rT . (3-115)

In this cese, under the conditions of saturation Eq. (3.110) becomes

|
————— !

6
E,

(1 + consts Ei)2

Pout(Bw) = const.

wvhich shows that even under these conditions the power out is proportional
to the power in, and does not decrease as in the first case. Tn this Iimit

the expression for the power out becomes

2
) 3Q,f,E
0 "2
P, (30) = —=
out n'213Q529

(3.116)

W

2 ’ L]
T, T

-18 -



3. Comments on Saturation
By comparing the saturation levels for the two cases of interest,
(3.11%) and (3.115), we have ‘

6, .
—;—13(51) /3 . ot Tf b5 . (3.117)
),

As QTl
occurrence of saturation comes earlier in the case of pumping near resonance.
In the sbove it has been implicitly assumed that w=0" or w=0" .

A further look at thé exact expressions for saturation, (3.90) and (3.108),
gshows that by operation off resonance, Q° , R # ® , vhe ~ffecte of
saturation can be reduced. However, (3.99) and (3.110) show that corre-
sponding to this reduction in saturastion there is a reduction in the output

end QT2 are usually much greater than unity, we see that the

power. In the operation of a device based on these principles the choice
of w relative to ° or Q° must be based on the various parameters
of the problem, such as power aveilsble, the harmonic power desired and
the properties of the circuit.

One comment which can be made, however, is that in all the expressions
for saturation, (3.113), (3.114) and (3.115), a speeding-up of the relaxa-
tion process, i.e., a reduction in Tl , will result in an increase in
the value of 51 at which saturation occurs; this will result in higher
available output powers. Hence, in any material which is to be used for
harmonic generation in this manner, we desire a short Tl or spin-lattice
relaxation time.

H. DISCUSSION

In the preceding sections of this chapter the mathematical theory of
hermonic generation in a two-level system has been discussed. Two particu-
lar cases have been studied: the first, in which the frequency of the
third harmonic output is near the natural resonant frequency; the second,
where the applied fundamental frequency is near the natural transition.
In both cases the quantum system behaves as a nonlinear element generating
a component of the macroscopic polarization at a frequency three times that
of the input. This time-varying polarization acts as a source for the
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electromagnetic fields which may be calculated from Mexwell's equations.
The magnitude of the polarization and the fielde generated may be expressed
entirely in terms of the known parameters of the quantum system and its
surroundings; no phenomenological nonlinearity must be assumed. Thus it

is seen that the nonlinearity. is intrinsic to the quantum system and may
be evaluated in terms of known quantities. Some of the aspects of the
results obtained will now be discussed.

1. Resonant vs Nonresonant Behavior

Although only two particulaer cases have been considered, nemely when
the applied frequency is such that o = 9/3 or w=~§ , 1t is more gener-
ally true that the existence of the nonlinearity is independent of the
frequency ® .  This may be seen from the fact that in the over-all inter-
action the total energy in the radiation field is constant (three fundamental
photons being destroyed and one at three times the frequency being created)
and hence the energy of the quantum system is conserved.(l) The fact that
the system contains discrete natural frequencies (in this case only one)
manifests itself in the theory by means of the resonant denominators, which
in the two cases considered are 1 + Tg(n' - 3w)2 and 1.+ Tg(n” - w)2 .

A general theory would contain two such denominators, one for the fundamental
and one for the harmonic, and would appear as the product of the two above.
The two cases considered are thus only speclal cases of the more general
result in which we have chosen the frequency to minimize one or the other

of the resonant terms.

The important thing to note here is that the nonlinearity is intrinsic
to the system and independent of the frequencies applied. The relation
between the operating frequency and the natural transition frequency merely
alters the msgnitude of the effect through the resonance denominators. When
the operating frequencies are all far from quantum transiticns. then the
system lcoks similar to a nonlinear reactive element. When operating near

a resonsnce, the system looks like a combination of nonlinear resistance

(i)If the quantum system'’s energy were increased or decreased, the
change would have to correspond to the difference between its energy eigen-
values. Such a change would place restrictions on the radiation frequencies
causing the transition, namely L t w, = (Ef - Ei)/n , where + indicates
sbsorption, - indicates emission, aind Ef and Ei are the final and
initial energies of the system.
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and reactance but of a larger magnitude due to the reduction of the
resonance term. In the microwave region the maximum strenth of the
nonlinearity will usually be small enocugh thet resonant operation will be
required. In general, the question of resonant vs nonresonant operation
will depend on the particuler aspects of the overall problem.

Ancther aspect of this problem is the question of saturation. Under
resonant operation the system will absorb energy, thus causing saturation;
for nonresonant operation the saturation is reduced along with the magnitude
of the nonlinearity. The importance of saturation is again & function of
the particular problem, being most severe for high power applications.

2. Dependence on the Parameters of the System
The dependence of the output power, Eqs. (3.99) and (3.109), on the
various parameters of the system are summarized below:

(a) Dipole moment. The output power varies as u8 , a factor of
B coming from 1/Q§ . From this it is clear that magnetic dipole
transitions will give negligible effects compared to electric dipole
transitions.(l)

(b) Linewidth and concentration. The concentration along with the
linewidth enter through the factor Qs or, alternatively, through the
absorption coefficient 7y . They occur as the product NT2 » which for
8 given transition 1s approximately constant. Thusg increasing the rcon-
centration N , will leave Qs constant while increasing the linewidth,
and conversely.

The quantity T2 also occurs in the resonance denominators as well
as in the expressions for saturation (along with the longitudinal relaxa-
tion time Tl)' Here a broader line (smaller T2) will result in a broader
frequency response as well as in & reduction in saturation.

(c) Population difference and the Boltzmann factor. In both cases
the output power is proportional to the square of the population difference
through its dep=ndence on Q;a . This squared dependence points out the
important fact that the sign of A or, alternatively, normal vs inverted
population, does not play a fundemental role in the nonlinear process. It

(l)In the first case considered, when =1 , f =1 , and the
cavity Q 1is large, the output varies as u . This }s a speclal case.
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does, however, have a subsidiary effpg:t @hrough the first order loading
of the cavity which is proportional to the first power of A . A normel
population distribution, A > 0 , causes the system to present a positive
loss to the cavity and lowers the Q ; an inverted population presents
a negative loss and raises the Q .

There exists possibilities of using inverted populations to.enhance
the ‘overa.ll nonlinear effect but they will not be given here.

The magnitude of A may be found from Boltzmann statistics, which
for no saturation is

W1 v(kMc)
A= S = — oy —

aar o 7(°k)

. (3.118)

For room temperature and wavelengths around 1 cm, this is a factor of
the order of 1/400 compared to a meximum value of unity. Operation at
higher frequencies or lower temperatures will result in an increese in
A , and hence an increase in the output power.

(d) Filling factor. The output varies as the square of the filling
factor £, (3.73), which is to be compared to a linear dependence in first
order processes. This places a strong importance on good circuit design
by which f2 may be increased. The other filling factor fl helps de-
termine the source Q (for the first case), and should be minimized con-
sistent with a maximization of f2 . For a gas completely filling a

structure, fl =1

3. Dynamic Shift of the Natural Resonant Frequency

One aspect of this problem which does not appear in usual formulations
of the problem is the effective detuning of the natural frequency of the
quantum system. In the two cases considered.the new frequencies were
denoted Q° and 0" , and are given by (3.42) and (3.53). This detuning
is of second order in the perturbation, H’ , and under the usual assump-
tion of small perturbations is negligible. In the field of megnetic reso~
nance this shift is known as the Bloch-8iegert shift. 1In terms of the dc



field Ho and the rf field Hl » it 1s given by(l)

2

: 2
Q=0 1+<%) =0 1+-l— ! (3.119)

‘ 16 \H

where Q° is the effective frequency and Q is the frequency corresponding
to the unperturbed eigenstates. By using values of dc and rf fields typical
to spectroscopy or maser applications this shift is of the order of one part
in 107 or less. In our application with electric dipole transitions and
strong fields the detuning may be an appreciable fraction of the natural
frequency.

At first such a concept may seem strange, as the usual interpretation
of the radiation problem is that of quantum jumps between the discrete
energy levels of the system. Such a picture, howaver, rests on the assump-
tion that the perturbation is small and is effective only in causing transi-
tions between these unpertiurbed leveic. When the perturbation is strong
the only rigorous method of solution is to go back and solve the problem
of a quantum system strongly coupled to the electromagnetic field. Under
such a procedure it should not seem surprising that conditions of optimum
interaction would differ from small signal theory. For the electric dipole
case such a shift might be looked upon as a sort of dynamic Stark effect.

From the point of view of the problem at hand the variation of the
effective natural frequency with power level implies that given a fixed
frequency of operation, tnere is only one power level at which optimum
interaction will occur. Whether or not this variation of the natural
frequency is significent depends on the linewidth of the transition. The
effect will be less for broader lines.

(l)This is precisely the same relation as Eq. (3.53). It msy be
derived as in the text or by Bloch's original arguments. Another simple
method is to take the linearly polarized field and separate it into two
circularly polarized components. By diagonelizing the Hamiltonian contain-
ing the dc field and the counter-rotating term and averaging the latter,
Eq. (3.119) is derived as the difference between the new eigenvalues.
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4. An Example: Harmonic Generation in Geseous NH,

We shall now consider an example using the inversion transition in
NH3 .
8. The Pressure Dependence of the Spectrum

The inversion spectrum of ammonia is made up of many lines, each
corresponding to a different rotational mode of the molecule. At low
pressures these lines are resolved, each having its own value of absorption
coefficient. As the pressure is increased each of these lines broedens
with half-width of 30 Mc/mm Hg, while preserving the magnitude of its
absorption coefficient. When these lines begin to overlap, the oversall
sbsorption coefficient at a given frequency will be the sum of the indi-
vidual contributions. At high pressures the many lines will be unresolved
and will appear as a single broad line with an absorption coefficient
which 1s nearly the sum of the individual absorptlon coefficients. Thus
Qs , and hence the level of power out, should increase with pressure up
to a point where the linewidth of an individual component becomes of the
order of the spacing between the lines. For smmonia, this occurs at a
pressure of about 200 mm Hg, corresponding to a half width of 6 kMec.

b. Saturation

For most gases with transitions in the microwave range we have

Tl = T2 .(l) Since NT2 is a constant and N « pressure, increasing

the pressure will reduce T. and T2 and hence will reduce saturation.

1
The effects of saturation should then be most predominant at low pressures.

By teking an operating pressure of 300 mm Hg where the line has neerly
its maximum ebsorption coefficient,6o y=T7Xx 107> el ana by using

the following data for NH3 :

po=1.47 x lO"18 esu
0 = 2x x 2% kMc
&v = 1/2x T, = 30 Mc/mn Hg s

(l)See Townes and Schawlow, Ref. (59), pp. 352, for & discussion of
this.
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we find
%a = 1.k x 107
s
and

(0 1,) = 2.67

The relations for output power (3.100) and (3.111) are

2
b g
(watts) = b.7T x 10710 2 Ei(eau) ,
£
1

Pout

vhere the third harmonic frequency, 3w , is near 24 kMc, and

-10 ;2 E6(esu) ,

(watts) = 3.1 x 10 > By

Pout

vhere 3w =~ T2 kMc and Qo = 5,000 . Plots of the theoretical output
power per c.c. of cavity volume for the two cases are plotted in Fig.
3.2, where the effects of saturation have been included. 1In Fig. 3.3
the saturation parsmeters S , (3.90) end (3.108) are plotted for the
two cases of interest. For both plots the quantities are plotted against
Ei which 1s proportional to the power supplied at the fundamental.

A similar calculation using HCN , (7 =9 x10 2 em >, u=3 x 107
Q = 2rn x 88.6 XMc) gives

2
f
P (watts) = 0.55 x 10710 —%-E6(esu) .
out f‘_ 1
1
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I. CONCLUBIONS

In this chapter a deteiled calculation of the process of third harmonic
generetion in & two-level system has been performed. The value of the none-
linearity has been related to the constants of the quantum system and its
surroundings, which here is e cavity. The effects of gaturation and the
losses in the form of Q's have been derived from the same formelism.

The dependence of the nonlinearity on the parameters of the system has been
discussed and an example hes been given using the well known inversion
transition in ammonia.

The particular system studied, (the two-level system) is the simplest
of all quantum mechanicel systems and is clearly only an epproximation to
any real situation. It does demonstrate, however, that even such a simple
system can show nonlinear properties. Other quantum systems containing
three or more levels will display similer nonlinear properiies whose megnitude
and frequency range will depend on the particular system involved. For
example, in Chepter V, & three-level system is consldered as a second
harmonic generator. Other possibilities exist for a two-level system;
second harmonic generation may be performed by the use of a dc blas ,61
and & form of paerametric amplification 1s possible.(l) We shall next
consider the parametric process.

(L)gee Chapter IV
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CHAPTER IV

PARAMETRIC EFFECTS IN A TWO-LEVEL
ELECTRIC DIPOLE SYSTEM

A. INTRODUCTION

In the preceding -hapter it was shown that a two-level electric dipole
system behaved in a nonlinear manner and its use as a third harmonic gener-
ator was calculated. Here another application of nonlinear phenomena,
namely parametric amplification or oscillation, is considered using the
same two-level system. This process has one very important difference
from harmonic generation proceases. For the latter there exists an out-
put (however small) for any level of input. To obtain parametric oscilla-
tion (eometimes called subfrequency oscillation) the level of the applied
"pump" signal muet exceed some critical value determined by the nonline-
arity and the circuit parameters. This value is known as the threshold.
We shall calculate the threshold for such a process, relating it to the
circuit Q and to the parameters of the two-level system.

The quantum mechanical system to be coneidered cousists of two levels
with energies El and E2 , where the natural frequency is defined as
= (22 ---El)/h « The interaction of the system with the radiation fields
will be taken to be via an induced electric dipole. In the energy repre-
sentation the perturbing Hamiltonian will then contain no diagonal compo-
nents, as a result of which higher order processes connecting the two
states must contain an cdd nurber of photons.

There are two interesting types of parametric processes possible
using such a system. In the first, four frequencies, @ 58 axj N
are present. Energy conservation requires ® + m2 + ‘“j + w, = o,
wvhere w > 0 for absorption and ® < O for emission. By setting
® == mp N a\3 e, o= -® and providing cavity resonances
at @ and o, ;8 parametric amplifier is possible where

= o v . (k1)
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In such a system there will be electromagnetic fields at mp s @ and
@, - This is shown schematically in Pig. 4.1.

In the second process the atomic resonance acts as the idler,
@ = 2 , and no electromagnetic field need be present at @ . Again
by setting “5. =a,= mp , the frequency condition is

2mp = o +0 . ! (k.2)

This is esrsentially a Raman type process in which the excitation is by two
photons, and is shown in Fig. 4.2, Here a cavity resonance need only be
provided at w‘ in order to obtain the parametric process. It 1s this
latter process which will now be described.

T
o !

g1
Y ‘Da ws
BT -{- * S T—L
2 mp ‘°1 f mp
| S I i

E E

FIG. 4.1--Energy level diagram for FIG. 4, 2--Energy level diagram for
the first type of para- the second type of para-
metric procees; metric process;

2wp=a)‘+n

2a)p-w‘+m1 .

B. THE EQUATIONS OF MOTION

The equations of motion for an muuced electric dipole may be derived
in the following manner'(l)

| (I)Thne equations are derived in a report by E. T. Jaynes.sz Their
equivalence t0 the density matrix formulation is demonstrated in Appendix C.
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1. Assume only two energy levels are involved, so that the state of
the system can he represented as

v o= oa(t)u) +ay(t)u) , (4.3)

vhere Iul) and |u2) are the eigenfunctions of the unperturbed system.
2. The Hamiltonian is

RS A

’

vhere Jlo is the unperturbed Hamiltonian, p‘op is the dipole operator,
and E 1is the radiation electric field.

3. In matrix notation, these are defined as

Ok E, "k E

-

M = H H = » (4.4)

K1o -k B K

where W0 is the matrix element of “op between the two states, and
El and Ee are the eigenvalues of the unperturbed Hamiltonian.

4, The dipole moment 18 given by the effective value of the dipole
operator, P = {(u OI)

5. Time derivatives are calculated from the coazutitor with the
Hamiltonian,

P -%S[M,P] . (4.5)

6. From Eqs. (4.%4) and (4.5) the following equations of motion are

obtained:
2
Pedlp - - (34_2) VE (4.6)
1 .
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vhere

N TN

and W 1is proportional to the energy stored in the dipole system, referred
to the equal population condition as the zero point of energy.

- Equation (4.6) describes the dipole moment, P , as an harmonic
ogscillator driven by the electric field through a coupling constant pro-
portional to W . If the populations are equal, the coupling to the
electric field is zero, which means that the dipole does not "see" the
radiation field. The maximum coupling to the field occurs when the
population difference is a maximum.

Equation (4.7) equates power absorbed to the rate of change of stored
energy; P 1s equivalent to a current density so the E P is the power
delivered to the dipolar system by the radiation field; W , in turn, is
the rate of change of energy stored in the dipolar system. To account
for loss mechanisms that might exist, Bqos. (4.6) and (L4.7) are modified
to

2 2
Fa—Dedr = -@—E)n (4.8)
T 1 .
2
W-VW
W+ S . P , (%.9)
T
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vhere T, is the relaxatien time associated with the decay of the dipele
mowent, and 1'1 is the relaxation time for the decay of stored ensrgy.
The W. is the M-,uu value for the unperturbed energy, which, for
s aystem in thermal equilibrium, is giver by the Boltzmann dietribution.

Equations (4.8) and (4.9) involve the three variables W, P ad
E , and 50 an additional equation is necessary for a unique solution,
From Slater's normal mode expansion for the fields in & resonant cavity,
Bq. (4.10) can be obtained:

baalepvd

e (4.10)

?,

where = resonant frequency for the unperturbed cavity,
loaded quality factor for the cavity,

= the ®illing factor,
= cavity volume, and

=< w8
[}

= number of interacting dipoles per unit volume.
It is assumed, in Eq. (4.10), that one normal mode field predominates,
and cgs units are used.

C. PARAMETRIC AMPLIFICATIOR OR OSCILLATION

A steady-state solution to Egs. (4.8), (4.9) and (4.10) can be obtained
by letting
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where P a” P; and E -™ l; , a8 required to give real values for B
and P .. Each value of O corresponds to one frequency present.
By combining Egs. (4.8) and (h.9) with the expansions above and using .

harmonic balance, we get

2
. o 2 10
(o -mL)+-——- Pp = =[] VB
T 1
2
2 £ J( )
1 2""12 - B rJ b A
- -E —— 2 1 P{FD-I' ) (h‘.ll)
1 /nfgd r J(aqf- ak) + —
T,

where R%—n-r = moment at frequency wp - (ah + a%) , and

v -0 b.12)
| Ho % W) ap B (k.
‘ y

The term Wb is proportional to the average value of the population
difference, and is different from we because of the saturation caused
by the presence of the flelds.

Considering now the case of a cavity containing ective dipoles and
resonant at two frequencies Wy and ab , let us define another frequency,
o, by the relationship

pr = O + 0 . ()""13)

The quantities ai y O and w, , are, respectively, the pump, signal
and idler frequencies of the parametric system. Since the cavity does
not resonate at o then Ei is zero, but P has a component at
that frequency.

The amplitude of the pump field, Ep , required for parametric

oscillation is reduced as the pump frequency approaches . For this
.- 9u -
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reason, let

a)P = (1 +q)

® = a1 + %)

@, = (1 +2¢ - X) , (k.14)

where € , X<<1 . The term X 1is introduced to represent the shift
of the natural frequency Q due to the presence of the atrong pump
fields. From Eqs. (4,11) and (4.12), we get

. 82 320 8202
o [~ke + 2X + |+ — Ps- p_i
\ € - X T, e - X
(4.15)
2 2
2y 0 5
- (== ¥, 1 - —— |,
1 2e(e - X)
8202 2 82 230
P +|-0 2% + - — P_1
e-x 8 e-%x/ 1,
. , (b.16)
1
~ P2\ _¥®
1 2¢(e - x) B
W
e
W, ¥ 5 (4.17)
6<
1+ 3
€
where
2
62 Y 1:}—2];2 .
ng



In the derivation of Eqs. (4.16), (4.17) and (4.18) the following
assumptions have been made:

(a) €-x>>1/ar

(E) Tl = T2

(¢) The pump amplitudes are much more intense than the signal and
idler amplitudes so that only first order terms in signal and idler have
been included.

Bquation (4.18) expresses the saturation efféct. For low values of
pump field, we have Wo = We , and as the amplitude of the pump field
increases, Ho approaches zero, which means that the popylations tend to
equalize. A normal population distribution corresponds to a negative
value for We , and similarly a populativu inversion means that We is
positive. For a normal population, the range of Wo is 0> Wo > We .

There is a relationship between 82 , €and X go as to optimize
the parametric effect. This relationship can be obtained by considering
the determinant, A , formed from the coefficients of the dipole moments

Ps and P__1

b 2 2
Jha” j(e - X)° + €
A = lmh [52 - XX - 2:-;)] + . (4.18)
{21'2 € - X

The magnitude of A becomes a minimum near the condition for which

82 = X(X - 2¢) , (4.19)

which means that Eq. (4.19) expresses the condition for optimizing the
dipole moments. Using the value for 62 given by Eq. (4.19), P, 1is
given by

2

. 2 _ 2
w.ar € - X 2¢ -
P, = (ale) 9 2 . E, . (4.20)

1 Jlme E[(G-X)2+€2] . e -X

2
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Equating the imaginary terms that result from substituting the adbove
expression for M, into XK. (4.10), the ecircuit equation, we obtain the
oscillation condition in terms of the loaded Q of the resonator:

(e - )())t2
1l 1
—_—- - (k.21)

‘ X - ’
Q, B c[(c - x)a + ee] [1 + -X(—T-aﬂ]
€

where

2,2
O e U\ W W i (4.22)
H n 2wa Lo

NJ = population of the lower state

W_= energy stored in the cavity = g- j nﬁdv .

The derivation of Eq. (4.21) assumes that P, and B, are uniform
over the interaction region. A negative sign is used in.REq. (4.22) to
make H opositive, as we < 0 for the normal population distribution.

The rcal -terms that appear from the substitution of Eq. (4.20) into
Eq. (4.10) are cancelled by choosing the appropriate value for o , the
resonant frequency of the cavity.

By letting x ® X/e , Bq. (4.21) becomes

2
x

[(1 - x)5 + 1] [1 - x] ) (1-2)

1 1l

QL H
From Bq. (4.19) 1t 1s seen that 8°/¢° = x(x - 2) , 80 that the

permissible range for x is x> 2 or x <0 . Since the right hand

side of Eq. (4.23) must be positive, the region of interest for x is

x < 0 , which means that mp and ®, are both either larger or smaller
than O .
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Bquation (5.23) may be written in terms of the on-rescnance unsatur-
ated absorption coefficient given in Appendix D:

2

xR, TN /2

y =a J 2 [} < 12) , (h.2‘&)
¢ 1

vhere c¢ is the velocity of light. Assuming a filling factor of unity
for the resonant cavity, we then find that

s (4.25)

vhere )\ is the wavelength. Combining Eqs. (4.23) and (4.25) results in

by 2

vy - G T = f(x) . (k.26)

The function f£(x) has a maximum value approximately equal to 0.15 ,

which means that we must have lm/ymL < 0.15 for oscillations to occur.

For a rotational mode of oscillation in a gas at room temperature at

A=1lmm , a strong absorption line might have 7 =10t emt , which

means that Q > (bx/1.5) x10° . If Q 1is specified, then x 1is
given by Eq. (4.26). As an example, with Q= 1.2 x 10“ , we £ind that
Xx~=-1 . Interms of € , this means

w = (1 +e€)
w = 1 - e¢€)

w = 21+ 3€)

hQ hQ}
E = — J[x(x-2)l¢] = — 7 le| .

H12 K12
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(WA

-18 ~
Hyp = 10 s Wwe have Ep - 103€ kv/em . With ¢ =0.01 , then we

find Ep = 10 kv/em and £, - fp = 6 kMc/s 18 the difference between
the signal and pump frequencies.

N,  CONCLUSIONS

The preceding discussion has indicated a manner in which a two-level
system can function as a parametric amplifier. It differs from usual
parametric amplifiers in that the quantum system provides the idler(l) and
th= pump t'requency equales half of the sum of the signal and idler frequenr
ciws.<2
By providing a dc bias, operation can occur where u$ = o, + a&
Other schemes using more than two levels offer the possibility of parametric

processes which may prove more efficlent than the one here presented.

(l)In this respect 1t is cimllar to Buhl'as ferrimagnetic amplitier,
vwhich can unse A mode of the sample for the idler,

(Q)Subharmonic pumping of n parametric amplifier has been consliidered
by Mortenson.63
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CHAPTER V
THE THEORY OF SECOND HARMONIC GENERATION IN A THREE-LEVEL SYSTEM

In this chapter we shall be concerned with the interaction of
radiation with a quantum mechanical system consisting of three levels.
The system may have only three levels in the frequency region of interest,
as in the case of an S =1 spin system, or 1f there are more than three
levels we mey consider those most strongly coupled to the fields. Such a
three-level system can act as a three-frequency mixer, a special case
being second harmonic generation.

Using the density matrix approach, the source of the nonlinear effect
is pointed out and the problem of harmonic generation is considered in
detall. The dependence of the nonlinearity on the parameters of the

system is considered.

A. EQUATIONS OF MOTION

Let the system under consideration consist of three energy levels

El P E2 s and E3 , in order of increasing energy and define the
natural frequencies as in Fig. 5.1.

FIG. 5.1--Energy level disgram for a three-level system.
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The Hamiltonian may be taken as

- Ned + ¥,

(5.2)

vhere # 18 'the perturbation resulting from the application of external
fields and Jii 3 is the matrix element of the perturbation taken between
levels i and J . The energy representation is used and it is assumed

that there exist nonzero matrix elements connecting all of the levels.

We may write the equations of motion of the system using the density
matrix formulation in the standard m.nner.(l) We shall assume that the
longitudinal relaxation times are equal while the transverse times may
be arbitrary. The assumption of equal longitudinal times simplifies the
aquations for the dlagonal components and the resulting expressions for
the seturation effects. Such an assumption is physically Justified, as
it is usually the case that such times are equal. Further, we are not
here interested in effects which depend in any way on such discrepancies
in relaxation times; their effect would be merely to alter the details
of the operation and would in no way affect the principles involved.

The equations for the three-level system are:

) (py; - P5) 1 [ . . ’
byt = ["“m poy + 3 Pg = Pip ) - Pyy Jll31] (5.20)

: (pyp - Pp) 1 ‘ ’ ’
P2 o “ml2 ll pl2+H23932'921H12-p23u32] (5.20)
1
ki ]
. ..33__33..._..
Pg3 * . ¥, "13":'ll P23 - 31)‘13 Py Hg| (5.20)

(1)gee Appenaix A.
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and

Pro * ?Jl‘a*' bro - 1 80y, = 35 [(pp - 0135 + Py HJ.’3 - Py 332] (5.24)

. l l ’ rd ’ '
Po3* 75, Pe3 " L ixfey T IE (33 - 2Py + o133y - £y 3] (5.2

Prg* ?i'; Pr3 = 185 "113'[("33 - e g+ Py By - 0y 323] » (5.21)
Let us examine these equations. The first three describe the behavior

of the dlagonal components which are essentially the probability of
occupancy of the three levels. In the absence of an external perttlrba.tion,
# =0 , these quantities take on their equilibrium values. If H 4O ,
then they are modified, giving rise to saturation effects. The off-
disgonal equations describe the coupling of the states, and it is these
which describe the absorption and emission of radiation. Let us specif-
ically consider the equation for the coupling of the 2«3 tramsition. The
first term on the right hand side of the e:spression for 923 gives the
direct coupling due to the perturbation 3123 which, to be effective, must
be almost resonant with the frequency 932 . In addition to the direct
ccupling there are two addit;onal terms which give rise to indirect

P1g 3421 » shows that if there is coupling of the
1-3 transition, p), } 0 , then the perturbation Hal will mix with

this to give a resultant coupling of the 2-3 transition. The last term

coupling. The first,

15' of the same nature. Since 913 will be seen to’be proportional to
H13 , this coupling term 1s proportional to 3121 31(13 and is seen to be
of second order. Such a process involves two photons and is nonlinear
in character. The other two equations are of the same nature, displaying
both linear and second order coupling.

We may now qualitatively understand the behavior of this system as
& frequency mixer. Let us suppose that we apply two radiation fields at
frequengies ml and wy . Let us further postulate that they are aﬁ)
: proximately resonant with the 1-3 and 1-2 transitioms, respectively.

(1) In general, any two frequencies can be mixed, but unleses they are
approximately resonant with the natural frequencies the effect will be
small,
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These perturbations will them, in a linear fashion, drive the system and .
glve nouzero values to the components g,, and py) . These will then
mx vith the perturbations ¥, end 313 and give e driving term for
923 at a frequency a)3 -ml —a, . Ae shown in Chepter II, we may cal-
culate the component of the dipole moment at the frequency m3 , and
since it is proportional to 923 ve see that the fields at frequencies
@, and @y will mix to generate a component of the dipole moment at the
difference frequency. 1) If we now provide a cavity resonange at this
frequency, we can extract power and the system acts as & mixer.(a)

A similar type of parametric process has been considered by
Anderson.33 There he applies a pump field resonant with 031 and allows
for cavity resonances at o) % 021 and @2 ] 932 where o + ®, = 331 .
Above a given threshold pump power level determined by the Q's of the
cavities one can achieve a form of parametric amplification or oscillation
at the frequencies wy and oy It is simllar in operation to Suhl's
ferromagnetic amplifier. 34,35

We shall now consider the specific case of second harmonic generation
using the same three-level system.

B. RESONANT HARMONIC GENERATION

We shall start by assuming that we have a three-level system in
which the intermediate level with energy E,r: lies spproximately midway
between 1':he'0'uter levels which have energies Ei and E3 « We shall assume
that there exist matrix elements connecting all the levels and that the longi-
tudinal relaxation times are equal. We shall assume magnetic dipole inter-
actions and let there be a strong fi€ld applied at the fundemental frequency

Hw) = H, cos (wt - # ,

(1)It should be noted that there will also be generated a component
of dipole moment at the sum frequency but because of the resonant nature
of the quentum system this will be very small, as it does not correspond
to any of the natural transition frequencies of the system.

('a)The magnitude of the power out will be proportional to the

product of the power at frequencies wy and o, and »1ill be nonzero for
any finite value of this product.
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and a veaker second harmonic field which is generated by the nonlinear
process, given by

H2w) = H, cos (awt) .

We need only consider perturbations which are almost resonant with the

various transitions, as the effect of nonresonant perturbations is very

small.(l) We mey then write our perturbing Hamiltonian as

\
.. R
le Hyp By cos (wt )] > e te

4

H23 = - Wpq Hy cos (ot - §) = Eelﬂ—l [ei(‘”t -9, ot - ¢)] ? . (5.3)

4

M., H
13 "2 ] 12wt ~12mt
Ji] = = u., H, cos 2w =~——3-—--[e + e ]
3 1372 >

TSN S O A T AUVt AT Spmntiames e

Let us now define the quentities Bi 3 vhich measure the strength of the

perturbations in dimensions of frequency

b2 fy -1p
o8

Pio

B o231 ! .18
1 23 o

! H

B, ol32 ) . (5.4)
13 o

and the conjugate quantities

»
Pay = P2
*

»
631 N pJ.e_3 y

(l)_'l‘he Jjuagnitude of nonresonant perturbations is found to be of the
order of ¥ 'fw ', while resonant perturbations are of the order of ¥ /an ,
where A 1s the linewidth, 8ince in any reascnable situation w >> &b ,

we mey neglect the nonresonant terms,
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From a careful exsminstion of Egs. (%.2), ve see that the "natural”
frequencies of the various components of the density matrix are

" "
911,922,933,:11“

Since only those perturbations which are almost resonant will have any
effect, we assume a solution of the form

1ot
punlll » 912-1129

1wt .
Ppo .xza , p23 -laae » .+ (5.5)

Xeiant

X33 » Pz =g

P33

where the A are constants, which are in general complex. By using
harmonic balance, our equations become

(A = M1) =40y (B Ay +Bigdy = By My - By Xy g) (6)
e
(g - ) =iT (631 13+ Pap 2o = Byg g - Byg >~32) (6e)

f 1
‘(921 - 0)) + :r-:a-] ).12 = [(lu - 122) 612 + ﬂ32 113 - 513 7&32] (64)
.

0 - ) + 2] 0y = [0 2390 823+ B30 - P Ny ()

o - 20+ 7oy = [ = 055) 81 * By Mo < 2z rog) - (60)
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We mey now proceed to solve these equations using the following assumptions.
First, agsume that the frequency ® 1is such that 2n = 931 s and teke

the fundamental fields to be mch larger than the harmonic fields. Then

ve have for the two components 112 and ).23 their values as determined
by first order interactions:

\, (A, - h) B
A = beo 12 (5.7)
(Q21 -m) + ;—l;
i 222 : x?% 53‘3 - (5.8)
o) 4
32 o3

By substituting these in Eq. (5.6f) and using the fact that 2w = 0
we have the relation for 113

31 H

)y -ln)+

13 = 1 13 P13 (A5

1 1
X [1 t’>(>‘33 -2y ¢ — (A - 133) " (A, - )‘22)] s (5.9)
12 23

where O = 921 - = - (Q32 - o) . We nov substitute these in the
equations for the diagonal components, giving
;
i - W
A, =X
A, =28 et ® P12 P21 (o 22)-cc
11 11 1 8 - N i
! 12 )

p- -

) (App = 250) |
2 P23 - 3. . ... ?, (5.10)
-b+——

23

e e
M) - (g - 2g5)
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vhere ve have included only the largest terms, and vhere c.c. is the
complex conjugate gquantity. By performing some algebra, we find the
following: ‘

'_ (A + )il)(l +28B) -«B + L;B)A

. A1
u (1 + 20)(1 + 2B) - AB (5.12)
.. (1 + A1 + B) - (_1: A)x;3 -1+ B)){l (5.12)
o .
(1 + 2A)(1 + 2B) - AB
_ (1 + 20)(B + x;3) - B(A + ){l) (5.1
33 -t
(1 + 2A)(1 + 2B) - AB
* (1 +3B) =25, (1+34)+ (A-B)
M1 - Rg3 = ot 23 s (5.14)
(1 + 2A)(1 + 2B) - AB
where
2T Bip Py
A= T (5.15)
2 :
T2 [6 + ﬂ
12
27T Byy By
Be= T . (5.16)
T 62 4 —
12 2
23

C. MACROSCOPIC MAGNETIZATION AND CAVITY REACTION

1. Magnetization
Given the density matrix, we can proceed to calculate the values of

all the observables of the system. In particular, we are interested in
the components of the magnetic dipole moment. The prescription for finding

- 107 -



e e

the value of sn cbservable; Q ,-is

3

Q) =T (0Q) . | - (521
We find for the dipole moment per unit volume or for the magnetization st
the harmonic
M, = N‘($>3:L Hyg + Pyg u31) ’ (5.18)
and at the fundamental,
My = N (py) kyp + Prp by + Ppg Mg * Pap Mag) s (5.19)

vhere N 1is the number of systems per unit volume. The second harmonic
component of M will determine the amount of output power generated,
vhile the component at the frequency w determines the amount of .
resistive loading at the fundamental.

2. Cavity Reaction
We may determine the fields generated in the cavity by the magnetiza-

tion from the relation

H= Yg M » (5.20)

where the cavity susceptibility, Xc s 1s given by

1 lmna f V"*'
—_— . (5.21)
X mz - m2 +1 u-i”g
e n :
<,

Here, H and M vary as em and ve have the definition

mevd . f Nx) -G oo, (5.22)
cevity
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vhere ,un(x) is the norme) mode function for the cavity. It is assumed
that there is only one mode near the frequency w, and Qh is the loaded
Q of the cavity mode. As described in Chapter III, we must allow for
different filling fectors for the two cewmponents of M2 . By substituting
(5.9) into (5.18) and using this in conjunction with (5.20) and (5.21),

ve have

Hy[ 1 bxe Ny,

BlL,=n by Tag Gy - 25901
2 Q2 ] 5+-—-—- 5-

A 1
: X 5(x3 A+ "7 (A, *2,2) " (a,, - x33)] s (5.23)

where now we have assumed that the ’ca.vity is on resonance, fl is

defined as the filling factor for the componeant of M2 proportional to
H2 N f2 is the filling factor for the component of M2 proportional
to Hi , and Q2 is the loaded Q of the cavity. By defining the

magnetic Q of the sample at 2w , QnQ s 88

1 M NTopo.pg, S, -8
_Q_nz? - 13 13il 31 (\ll 33) , (5.2)4_)
Eq. (5.23) becomes
1 2 f VJ‘t 1 8., B
i, | £y 84 . 2 12 "23 -
y A5 =A%) <g+-i—)(-—)
Qz Lo 13\%1 © 23909 2 "o

i

i
X 5(l33 - ll) + ;—2'; (Xll -')s22) - 1—1—2' (laa - X33) »

(5.25)
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e =¥ -3

where 813 is a saturation parameter defined as

A, = A
513 = _ti___eﬂ . (5 R 26)
A=A
1 733

D. CHOICE OF B

Let us now suppose that we are in a position to vary the value of
the energy E2 relative to a fixed value of E3 - El . In a parameg-
netic solid this can be done by varying the angle and magnitude of the
magnetic field relative to the crystal axes. We shall look for the value
or values of & which will maximize the nonlinesrity of the system. This
maximization will occur, when for a fixed Hl we maximize 'H2 , [Eq. (5.25)].
Let us first assume that the levels are equally spaced, 5 =0 . In

this case the term in brackets reduces to
1 i

(A, =25) - =— (A, - 2) . (5.27)
Ty T 220 T T Ve T

If we now assume further that the linewidths of the two transitions are
equal, Tog = T1p substitute for A, , X,, , and k33 from (5.11),
(5.12), and (5.13), and expand the Boltzmann term for the equilibrium
values, keeping only the linear term,we get for (5.27)

1 KaQ
T—-;—k‘rﬂ (B -A) . (5.28)
12

We see that, under these assumptions, the nonlinear term is nonzero only
if B4 A , which implies |u | A lp23| . Even if B A A , we see
that the term for ® = O depends on the difference between quantities
and hence will not contribute significantly to the effect. We thus set

(5.27) equal to zero and the expression for H, becomes

3
) 11 8, 2£,VE 8B, B, 5,
2 -+ = - 52 T \2 ° (5029)
W QY 13 p + (712)
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vhich is meximized for & = 1/r., . Hence ve find that the maximum
velue for 1-12 oceurs vhen 32 lies one linewidth from the valye

(E, + za)/a , or alternatively, when the fundamental signasl at « sees
both the transitions at 021 and 032 at their half-power points. Upon
setting 8 = 1/'t:|_2 » we have for H,

3
T, VB 3 8B, By s

Hy = T f. 8 ] - (5.30)

Sl P

E. HARMONIC POWER
The power coupled out of the cavity may be found from the relation

P(aw) = — —
Qe by

2w Ho

S , (5.31)
Qe 8x

o

av

vhere the bar signifies time average. By substituting from (5.30) into
(5.31), we obtain

2 2 2
W £, V815 (Byp Ppg Typ B) t
Flew) - — . 1 1 8. F
81Q§2u§3 Q| —+ —+ 223
€ Q
Q‘O e Q'1112
(5.32)

vhere we have used l/Q'E = l/QO + l/Qe . From (5.32) we see that the
apparent source Q 1s a parallel combination of the cavity Q and a
modified magnetic Q , the modification involving the filling factor
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and including the effects of saturation. The source Q 1s then

1 . 8
- -~ t _1—1.3 (5.33)
UBource B Y

The question of population inversion is the same as in the case of the
two-level system: 1if the population of levels 1 and 3 is in a normal
state, then the quantum system presents loss reducing the source Q ;
if levels 1 and 3 are inverted then ng becomes negative, the source
Q (5.33) is increased, and the possibility for oscillations exists.
Assuming that the external coupling is chosen to be optimum,

Qe = Qsource‘ s our expression for the power becomes
2 2 2 _h
wfo V8T, (Hon s T-5)° H, Q
2 1 12 "23 12 1 c
P(2w) = 21223 A8 L sowce | (5.
256x B p,ls sz

We may consider the above under two special situations. If we afe at

low power levels where there is no saturation, S13 =1 , and the effec-
tive magnetic Q , sz/fl » determines the source Q , as would be
the case for efficlent operation, we have for the power

2 2 4
o £5 V (u)p Bpy Typ)" Hy

P(2w) =
256x 1 u§3 Q, T

while at high power levels the saturation reduces the loading of the

semple and we have Eq. (5.34%) with Uource = % -

F. SATURATION

The phenomenon of saturation occurs when the populations of levels
1l and 3 tend to equalize and is described by the saturation parameter
813 defined in Eq. (5.26). The exact value of 5., must be found from

13
(5.14) and will, in general, be complicated. If, however, we make the
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simplifying assumption that A =B , 1i.e., |p.12| = |p23| , then we
have '

8, = (5.36)
13
12Ty “12 Hi

s
When the fundamental field strength is such that

y
Hiz————-é— , (5.37)
T12 Ty H1p

then saturation will start to occur. If we examine the expression for
the output power (5.35) and QU (5.24), we see that the power is pro-

2
portional to 712 1'13 and that we desire large 712 and 1'13 Oor narrow

resonance lines. From (5.37) we see that to reduce saturation we desire

as small a value of 1']2 Tl as possible. These two requirements point

out the important fact that we desire as small a value of '1‘l as 1is

possible, consistent with a narrow linewidth. This requirement is in
sharp contrast to maser theory, where saturation and a large value of

’I‘l are desired.

Assuning that we reach saturation, by dropping the 1 1in the
denominator of (5.36), we find for the saturated output power

® fg v q o
16x u13 sz Tl

Psat(aw) =

aor by substituting for Qo Eq. (5.24),

2
f2 \ N2 (x )
Psa.t(aw) = he “ T2 33 . (5.39)
1
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G. DEPENDENCE ON PARAMETERS OF THE SYSTEM

From this relation for the saturated power and the equivalent
expression for the low-level, nonsaturated case (5.35), we can examine

the dependence on the parameters of the atom and the cavity.

1. Filling Factor

First of all we see that the output power is proportional to the
volume of the cavity, V , and to the square of the filling factor, f2 s
defined in Eq. (5.22). The dependence on the square of the filling factor

emphasizes the importance of good circuit design.

2. Dipole Moments

The low-level expression (5.35) shows that the output is proportional

~. to the square of the dipole moments of the 1-2 and 2-3 transitions and

is independent of the moment of the 1-3 transition - the u§3 in the denom-

inatcor is cancelled by the same term in sz . The value of the moment

“13 must be large enough to make l/QmE'>>‘l/Q0 » however, We see that

we desire large dipole moments, especially at the 1-2 and 2-3 transitions.

In the saturated case the output is proportional to uli and is inde-

pendent of Hip and u23 . We thus see that for high power operation,

a large M3 is extremely desirable. For this case Hio and u23 do

determine the applied power level necessary to cause saturation from

(5.37). The dependence on dipole moments is seen to be critical in both

cases. If paramegnetic substances were to be used, this strong dependence

on u would polnt to the use of materials with large effective spins.

3. Relaxation Times and Concentration
in (5.35) for the unsaturated case T, , the longitudinal relaxa-

tion time does not appear. The transverse relaxation time appears in the

form 72 = the latter factor is obtained from sz . The concen-

T
12 13
tration, N , comes in linearly through sz , and so at low power levels
3 will result in the maximum nonlinearity. At

saturation power levels, the ratio Tg/Ti points out the desirability

a maximization of NT

of making Tl and T as nearly equal as possible (we have the restrictionm,

T1 > T , from the definition of these quantities). This less strict

condition on Tl should meke possible the use of a wider class of mater-

ials than maser applications.
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Under saturation conditions we find that the power is proportional
to the square of the quantity Nt . For high power operation NT should
be maximized; for low power levels, 'NTB . 8ince 1T generally
decreases with concentration, a large citange in N usually results in a
less significant change in the product Nv , although perhaps it results
in a more important change in NT3 . We here neglect entirely the

effects of cross-relaxation.

4, Temperature Dependence

The last major dependence is that of temperature. In the formulation
it arises both in the temperature dependence of the relaxation times and in

the Boltzmann factor. In the latter case we have

50
Ao -G —
13>

assuming three levels only. The Boltzmann factor comes in through the
magnetic Q , ylelding a lower value of sz and hence a stronger non-
linear effect for lower temperatures. By again assuming low power levels,
where (5.35) applies, we see that P(2w) varies inversely as the first
power of T . For saturated conditions (5.39), the Boltzmaenn factor
introduces a factor of T-2 but the temperature dependence of 'I'l will
in most instances more than cancel the 'I'-2 . Hence, low temperature
operation has the effect of increasing the magnitude of the nonlinearity
for low power levels while increasing thg effects of saturation for high
power operation, For high power operation no advantage is gained by
operating below room temperature unless a materisl 1s used in which either
Tl is independent of tempersture or where T also increases with
decreasing temperature.

Low temperature operation may, however, be useful in another
application, namely mixing. If it were desired, for example, to down-
cqnvert from a frequency oy to a lower frequency m2 at low signal
levels, then & three-level system with suitably placed energy leyels
could be used. Low temperature operation would increase the magnitude of
the nonlinearity as well as reduce circuit noise. The details of this

process will not be presented here.
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5. Nonresonant Behavior
Throughout this chapter we have assumed that 20 = 931 . Such &

condition is not required for harmonic generation but does serve to e

increase the magnitude of the nonlinear effect by reducing the resonance
denominator. By operating on resonance, the nonlinearity possesses a .
resistive character, while off resonance it would be mainly reactive.

Another aspect of off resonance behavior is concerned with the
choice of & . Previously it was shown that & = l/'rl2 gave the maximum
nonlinearity when saturaiion was ignored. If saturation is included, we

must compere the veriation in the nonlinearity given by (5.29),

B, « ——— (5.40)

with the more exact saturation expression for S13 B

1

S.. = . (5.4) -
13 5
T) B1p Hi

5 -
2o 1, |67+ T—l-)
12

In the limits of saturation we have

H, « b2 (5.42)

which shows that the saturation power should increase with increasing ©
because the fundamental absorptlon responsible for saturation is reduced.
In the preceding discussion it has been assumed that the fundamental
field, Hl , i1s given and is continuously veriable. In actual practice,
from en espplications point of view, 1t will usually be the case that the
level of the fundemental power will be fixed. It 1s then deslrable to

maximize the output power for a glven input power by varying o .
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To do such a maximization mathematically would be an extremely involved
task due to the complicated dependence of the efficiency om & .
Specifically dependent on & are the Q at the fundamental (5.45), the
saturation (5.36) which affects the souree Q (5.33),, the fundamental

Q (5.45) and the output power, (5.39) and finally the dependence not
specifically included in the analysis, (5.40). Such a maximization would
be most easily accomplished in practice by experimentally varying 5 ,
for example, by altering the direction and magnitude of an applied
magnetic field.

H. FUNDAMENTAL ABSORPTION AND CAVITY LOADING

From Eqs. (5.19), (5.7), and (5.8), we have the magnetization at the
fundamental :

2
(+) . Tt h B(A,. + A -2).)+-i-(x -A)

M PRNINY: 11 * A3 7 P 33" *n!|

24 |5 + — ‘l’l2
L 12 ,
(5.43)

(+) it

where Ml is the component of Ml varying as e » and we have

again assumed Hip = p23 and Tio = 723 . The first term will, as
before, be small, leaving

2
b LNupE T, (- )‘1_)_‘ 5.1
= I . 5.
248 (1+ 8 1'12)

4

By using the cavity susceptibility, we find that the fundamental loading
of the cavity by the sample is given by a Q

1 £S
— = 13 , (5.45)

Q qml(1+527§2)
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where

e e
—i— ) 2n N p)p Moy Tio (Xll - 133)

- ” ) (5.46)

and f 1s the filling factor. From this we see that the loading is
reduced if the filling factor is small or if saturation has occurred, or
if the system is detuned, 1.e., large O

I. RATIO OF FIRST AND SECOND ORDER MAGNETIZATIONS

Upon teking the ratio of the magnitudes of the first and second

order magnetizations under the same assumptions leading to the derivation
of the power expressions, we find

M2 My Tl H2

1
=~ . (5.47)
oo e
For a magnetic dipole we have u ~ 10 s 8O
% 6 Hi
—=2XxX10" 1,, =
13 H
% 1
If a material had a linewidth corresponding to T3 " 0.5 X 1076 , or
around one megacycle, then for Hl = 1 oe the second order magnetization
is comparable to the first. For an electric dipole system with 1ts much
larger dipole moments p ~ lO"18 ; we would have for the ratio of the
polarizations
P 8 E?.
~=]3J0 T,, —
P =B
1 1
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FIG. 5.3--Theoretical harmonic power,
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If T, were 10°T sec, then for E =0.1 esu or 30 volts/em , we
have P2 ~ Pl . An electric dipole system with the desired selection
rules and energy levels would thus display an enormous nonlinear effect.

J. EXAMPLE

As & brief example let us consider the use of ruby as the active
substance. A plot of the ground state S = 3/2 energy levels for Hdc
at 90o to the c-axis is shown in Fig. 5.2, where the curve is taken from
the analytical work of Chang and Siegma.n.65 The matrix elements are

calculated to be
Hyp = Hp3 = 2.1 g

Myg = 1.15 uy

20 spins/cm3;

where Mg is the Bohr magneton. We shall take N = 0.25 X 10 2
then, from Strandberg, the linewidth corresponds to T = 0.4 X 107" sec.
The operating frequency 1is taken to be 9.5 kMc for the fundamental and 19.0
kMec for the harmonic. With the assumed spin-lattice relaxation times of
lO-8 sec at 300°K, 1077 sec st 77K and b x lO-h at 4.2°¢ and an
unioaded cavity Q of 5000, the output power as a function of fundamental
field strength is plotted for the three temperature ranges in Fig. 5.3.

The increase in low-level power at low temperatures and the effec¢ts of

saturation are clearly seen in this plot.

K. CONCLUSIONS

We have seen that the three-level system can act as a frequency
converter and in particular as a harmonic generator. The dependence on
the parameters of the system has been considered and in particular the
desire for a short spinrlattice relaxation time has been pointed out. .

For microwave frequencies the system does not seem as well suited for
nhigh power applications as does, for example, a ferrite, but at higher
frequencies, using materials with large spin and large crystal field
splittings or electric dipole transitions, this system may find use.
Perhaps the most useful application of this system would be as a low-level
mixer which was mentioned previously.
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CHAPTER VI

EXPERIMENTAL EVIDENCE OF THIRD HARMONIC GENERATION IN A
TWO-LEVEL SYSTEM

The experiment described in this chapter was underteken to complement
the theoretical work of Chapter III. The primary objectlive of the experi-
ment was to observe the harmonic generation effect, predicted by the theory
and previously unobserved, and, 1f observable, to obtain as much quantitative
and qualitative information as possible. The experiment was successful
inasmuch as the effect was indeed observed, giving harmonic powers in excess
of 10 milliwatts. The qualitative results generally agreed with predictions,
but the quantitative results, in particular the output power, were only in
fair agreement with theory.

A. THE OPERATING SUBSTANCE, NH3

The materisl used in the verification of the possibility of harmonic
generation in a two-level system was ammonia gas. Specifically, use was
made of the inversion transition occurring near 24 kMc. The use of smmonia
had several advantages: first, it is readily available and fairly easily
handled; second, there 1s extensive knowledge of its spectrum due to
previous spectroscopic studies; third, its spectrum displays a very strong
absorption line in the neighborhood of 24 kMe which is a convenient frequency
range with the equipment available.

It was further decided to perform the experiment for case I(l) where
the pump was applied near one-third of the natural frequency of 24 xMc,
putting the fundemental in the range of X-baend and the third harmonic at
K-bend.

B. THE CAVITY

In spite of the very strong absorption line in ammonia, the magnitude

of the predicted nonlinearity is such as to require a resonant system at

(lySee Chapter III.
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both the fundamental and the harmonic; the tormer 1s required in order to
get the required fundemental field strengths for reasonable power levels,
end the latter is required since the harmonic power output is proportional
to the cavity Q at the harmonic. The cavity must then be resonant at

@ and 3o , prefergbly with high Q's at both frequencies, «nd must
have a region in which the electric fields at the two frequencies are
strong and essentlally parallel.

The design decided upon was a re-entrant cavity similar to a fore-
shortened quarter-wave line with the interaction region near the gap. A
test cavity was built in which both the height of the cavity and the length
of the post were variable. Cold test measurements were made at various
frequencies and plots of cavity height vs post height were made for a
fixed resonant frequency. This was done both for frequencies near the
fundamental and near the third harmonic.

Finally, cavity dimensions giving simultaneous resonances at ® and
3w were found by comparing the two sets of iso-frequency curves. An
intersection satisfying the desired conditions was found as the inter-
section of the foreshortened 3A/4 and foreshortened 9A/4 at the
fundamental and harmonic, respectively. A cross section of the cavity
is shown in Fig. 6.1 along with the pertinent dimensions.

The coupling to the cavity at both the fundamental and harmonic was
achieved by the use of magnetic logps. These in turn were fed from a
small coaxial line with an OD of 0.094% in. It was necessary to construct
a coaxial-to-waveguide transition for the harmonic in order to be able
to work at K-band in the waveguide. The coupling loss at X-band was 1.5 db
and at K-band was 5 db, giving a net loss of greater than 6 db,

In order to permit the evacuation of the cavity, "O" rings were
inserted in the joint between the base and the top, as shown in Fig. 6.1.
The mejor source of vacuum problems in the cavily resulted from leskage
along the center ¢onductor of the coaxial coupling lcops. The vacuum
conditions were satisfactory for short term operation, but over long periods

of time enough air would leak in to cause breakdown. This breakdown will

be discusged later.
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C. EXPERIMENTAL SETUP AND OPERATION

A schematic of the experimental setup is shown in Fig. 6.2. The
power source was a 2J51 magnetron opersted with a 2 pusec pulse at 50 PPSs,
giving & duty cycle of lO-h. After passing through a directional coupler
to lower the power level the signal was put through a low-pass filter in
order to remove magnetron harmonics. It was then passed through an
attenuator which was used to vary the level of the applied power. The
maximum availeble power was about ¢ L+ ~cak. Both the indicent &nd reflected
povwer were monitored by crystal decvectors and an E-H tuner was used to
match into the cavity.

On the output side (K-band) the coaxisl to waveguide transition was
followed by a slide-screw tuner, a frequency meter, a precision attenuator
and a crystal detector.

In all the experiments performed, the gas in the cavity was at a
constant pressure and was not circulated. In order to determine if the
source of the effect was some general property of the gas, dry nitrogen,

argon and alr were also used in the experiment.

D. EXPERIMENTAL RESULTS

The experiment was performed using four gases; ammonia, air, dry
nitrogen, and argon. Only the ammonia gave any harmonic generation under
the desired operating conditions. The cavity was matched to the wave-
guide at the fundsmental so that the reflected power was down 10 to 20
db from the incident. Under these circumstances output powers on the

order of 10 mw were observed at the third harmonic.

1. Bregkdown

Oreration at high power levels was frequently limited by breskdown
of the gas in the cavity. The input power level at which the cavity
broke down was a function of the gas, the operating pressure and the
condition of the cavity, especially the input loop. Once breakdown had
occurred, the cavity had to be disassembled ard cleaned before it could
be used again. In some runs maximum power (1 kw) could be applied to the
ammonia without breakdown, while in others slight air leaks caused break-

down at low power levels. That the breakdown was due to the air could be

- 125 -



ORI

C. EXPERIMENTAL SETUP AND OPERATION

A schematic of the experimental setup is shown in Fig. 6.2. The
power source was a 2J51 magnetron operated with a 2 psec pulse at 50 pps,
giving a duty cycle of lO-h. After passing through a directional coupler
to lower the power level the signal was put through a low-pass filter in
order to remove magnetron harmonics. It was then passed through an
attenuator which was used to vary the level of the applied power. The
maximum available power was gbout 1 kw peak. Both the indicent and reflected
power were monitored by crystal detectors and an E-H tuner was used to
match into the cavity.

On the output side (K-band) the coexial to waveguide transition was
followed by a slide-screw tuner, a frequency meter, a precision attenuator
and a crystal detector.

In all the experiments performed, the gas in the cavity was at a
constant pressure and was not circulated. In order to determine if the
source of the effect was some general property of the gas, dry nitrogen,

argon and air were also used in the experiment.

D. EXPERIMENTAL RESULTS

The experiment was performed using four gases; ammonia, air, dry
nitrogen, and argon. Only the ammonia gave any harmonic generation under
the desired operating conditions. The cavity was matched to the wave-
guide at the fundamental so that the reflected power was down 10 to 20
db from the incident. Under these circumstances output powers on the

order of 10 mw were observed at the third harmonic.

1. Breakdown

Operation at high power levels was frequently limited by breakdown
of the gas in the cavity. The input power level at which the cavity
broke down was a function of the gas, the operating pressure and the
condition of the cavity, especially the input loop. Once breskdown hed
occurred, the cavity had to be disassembled and clesned before it could
be used sgain. In some runs meximum power (1 kw) could be applied to the
ammonisa withoul breakdown, while in others slight air leaks caused breek-

down at low power levels. That the breakdown was due to the air could be
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E. DISCUSSION

1. Qualitative
In general, most all of the experimental results qualitaetively agree

with the theoretical predictions. First of all, for a fixed low input
power level the output power increases with pressure up to around 100 mm Hg,
after which it i1s relatively independent of pressure. This is in agree-
ment with the fact that the overall intensity of the ammonia line increases
with pressure due to the overlap of the broadened individual components

as explained in Chapter III, section H.4., This increase should continue
until the width of an individual component approximately equaels the overall
frequency spread of these components. At the pressure of 100 mm Hg, the
full linewidth is 6 kMc, which includes most of the strong components of
the line, thus giving a good agreement.

Since the operation corresponds to 3w =~ Q , saturation should be
caused by the quantum system sbsorbing the generated harmonic power. In
this cese the saturation denominator is of the form (1 + const T1T2E§)
where T2 = Tl and is inversely proportional to pressure and El 1s the
fundamental field strength. The saturation should then be minimized
(saturation denominator minimum) for higher pressures. A comparison of
the experimental curves shows this to be true, the effects of saturation
being minimum at the highest pressure exasmined, 300 mm Hg.

2. Quantitative
A quantative comparison of the experimental results with theory, in

particular the magnitude of the harmonic power, is quite difficult because
of the large number of unknown factors in the experimental setup. The

most critical unknown is the filling factor, fe 5 which depends upon

the magnitude and orientation of the fundementel and harmonic fields within
the cavity. Because of the use of higher order modes and the irregular
geometry of the cavity, the filling factor is not known even approximately.
This is further complicated by the fact that the assumption that tle
interaction occurs only in the gap region appears unjustified. 8ince the
output power depends on fg , this uncertainty is megnified. We shall
then only be able to speak in order-of-megnitude terms.
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Calculating the field strength in the gap region from a knowledge
of R/Q , @ , and the dimensions of the gap gives a value equal to

200 esu at an input power level of 1000 watts. Assuming the interaction

>,
=
-4
:

to occur in the gap, as originally anticipated, the saturation should be
much larger than observed. Further, the power expected from fields of 200
esu is much larger than observed. Evaluating the fields in the other parts
of the cavity from 2 uniform field approximation yields numbers much more
in line with the observed output power levels and saturation. This then
points to the distinct possibility that the power is generated throughout
the cavity and not just in the interaction region. From the results
obtained by use of this cavity it 1s lmpossible to decide exactly where
the interaction takes place.

By assuming some order of magnitude values for the quantities involved,
we may make e comparison with theory. Assuming E, = 50 esu for
P, = 1000 watts, V = 6 m’ y f,=01, f

in 1
the cavity is (from Fig. 3.2, Chapter III) P(3w) = 250 mw , compared

1
= 1 , the power expected from

to an observed value of 10 mw. Including the coupling losses of over
6 db, the disagreement is near 6 db, which is well within the limits of

the sbove assumptions.

F. CONCLUSIONS

From this work we can conclude that all evidence points to the
existence of the nonlinear effect predicted. The results do not, however,
allow a detailed comparison with theory because of the many experimental
uncertainties involved. In order to more fully understand the effect and
to compare experiment with theory, a much more detailed experiment should
be performed. For such an experiment the cavity should be of a regular
geometrical shape so that the field configurations are known analytically.
In this way both the filling factors and the megnitude of the fields may
be found. One possible cavity which might be used is one in which both
modes are TEM, such as the shorted coaxisl line. For this case the filling
factor may spproach 0.25. 1In a practical application, the Fabry-Perot
resonator would appear as the best cavity, yielding a high Q and large

volume.
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CHAPTER VII

EXPERIMENTAL EVIDENCE OF SECOND HARMONIC GENERATION
IN A THREE-LEVEL PARAMAGNETIC SYSTEM

In Chapter V, a theory was derived which suggested that it should
be possible to obtain a second-order nonlinearity in a three-level system.
Such a nonlinearity would allow the mixing of two frequencies wy and
w5 to obtain their sum and difference frequencies, a special case of which
is second harmonic generation. The detailed aspects of this process were
considered in Chapter V. Briefly, when the three levels are approximately
equally spaced and the selection rules allow transitions between all
three levels, then second harmonic generation may occur when the output
frequency, 2w , is equal to the frequency spacing of the extreme lievels,
(E3 - El)/ﬁ . By using a paramagnetic ion as the active substance and
by varying the maegnitude of the applied dc magnetic field as well as its
direction relative to the crystal axes, the above requirements can be
satisfied. Since this effect had not previously been experimentally
observed, a preliminary experiment designed as an attempt to observe the
effect was performed. This experiment and the results will now be
described.

A. MATERIAL: RUBY

The material used in the experiment was ruby. This was choser
because of its availabllity and the fact that its spectrum is well known.
Chang and Siegman65 have calculated, from the known spin Hami{ltonian,
the energy levels and matrix elements, and the latter have been experi-
mentally checked by Anmnnn.66 These calculations of Chang and Siegman
vere used to choose the approximate operating point and no preliminary
spectroscopy was done to check their calculations. The ruby sample used
vas borrowed from R. Morris, and was a cylinder of pink ruby 10 mm in
diameter and 2.5 mm high. The c-axis of the crystal was subsequently
found by X-ray diffraction techhiques to lie 2.5° from the normal to the

crystal face.
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FIG. 7.l--Ruby sample used.

B. OPERATING POINT

Because of the limited availability of rf power sources the
operating frequency was chosen to be 9.5 kMc fundamental, and 19.0 kMc
harmonic. From Chang and Siegman, an operating point in ruby satisfying
the conditions mentioned above and corresponding to the frequency 9.5 kMc
should occur with the direction of the dc megnetic field at 9Oo to the
optical or c-axis with magnetic fields of the order of 2000 oersteds.
Denoting the ruby c-axis as Z and the plane of Ho as the x-z plane,
then HO
fundemental interaction, corresponding to the 1-2 and 2-3 transitions,

is along the x-axis. The strongest matrix elements for the

are found to be along the y-axis, while those for the harmonic or 1-3
transition are along the dc field or x-axls, the same relative orientation

as 1n the case of second harmonic generation in a ferrite.

C. THE CAVITY

Because of the anticipated low level of the observed harmonic, 1t
vas decided to perform the experiment in a microwave cavity resonant at
both fundamental and harmonic in order to enhance the magnitude of the
effect, It was further decided to place the cample egeinst the wall of
the cavity where the rf magnetic fields parallel to the wall would be
large. Because of the spatial orthogonality of the fundamental field
H) and the resultant harmonic megnetic dipole moment M2(2m) , it was
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necessary to choose cavity modes whick would have orthogonal H fields,
both of which were parallel to the wall where the sample was to be placed.
A pilece of rectangular, X-band waveguide shorted at one end and aper-
ture coupled at both the fundamental and second harmonic was used as the
cavity (see Fig. 7.2). At the fundamental, the cavity was resonant in
the TEOll mode, while at the harmonic several closely-spaced modes were
available for use. Looking from the X-band aperture, the TM120 and
TM121 were among the sultable modes. In cold test without the ruby
sample, the frequencies of these modes were found to lie where they were
expected. With the ruby sample in the cavity, however, the modes near
the second harmonic were perturbed considerably and the precise deter-
mination of the mode configuratious was not possible. Since the sample
did not affect the X-band resonant frequency significantly (lying in the
weak electric field region) it was easy to arrange the dimensions for
fundamental resonance. In order to obtain the K-band resonance a movable
short was attached to the cavity and the sample was placed on the wall
near the short. Due to the large dielectric constant of the ruby (e = 10)
the K-band fields were drawn into this region and the tuner was made more
effective. (Since this wavegulde was cut off to the fundamental, it did
not affect the X-band resonance.) By this means, a 2:1 ratio of the
resonant frequencies was achieved. The loaded Q's at fundamental and

harmonic were both 300.

D. EXPERIMENTAL SETUP

A schematic drawing of the experimental setup 1s shown below in
Fig. 7.3. The power source was a 2J51 magnetron operated in s pulsed
mode with a pulse repetition rate of 60 pps and a pulse length of 0.38 usec.
A shorting switch was used to measure both the incident power and the
power reflected from the cavity under operating conditions. A low pass
filter with a rated 40 db rejection was used to reduce the harmonics
generated from within the magnetron. A Varian magnet was used to provide
the necessary magnetic flelds and a simple biased crystal detector was
used for detection of the harmonic output power. Urder operating con-
ditions the cavity was matched in at the fundamental so that the reflected
power was 12 db below the incident.
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Ruby sample

: K-band waveguide

Sliding short

X-band waveguide

Output K-band guide

X-band coupling aperture
L Coupling aperture ‘

FIG. T.2--Cutaway drawing of the cavity.
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E. RESULTS

The following are the qualitative results of the experiment:
(a) Under the application of several kilowatts of X-band power at

9.503 kMg harmonic powers on the order of tens of microwatts were observed
at 19.006 kMc,

(b) For a fixed level of input power the magnitude of the output
power was critically dependent on the magnitude of the applied magnetic
field and its angle relative to the crystal axis. No power was observed,
to within the level of the detection scheme, when the magnet was off
resonance. The width of these resonances was typlcally 20-30 oe.

(¢) As the angle © of the magnet relative to the crystal axis
was varied, the magnetic fileld at which optimum interaction occurred
changed in qualitative agreement with a curve of
E3 (o, Ho) - B (o, HO) = const.

(a) For a fixed angle © there appeared three values of magnetic
field at which harmonic power occurred, two near 190C oe and one near

1700 oe. The latter response was small compared to the other two.

F. INTERPRETATION

First of all, from the fact that the harmonic power observed was
critically dependent on the magnitude of the magnetic field and its
orientation, it is concluded that a nonlinear process within the material
itself 1s responsible for the harmonic generation. From the relatively
good agreement between the experimental operating conditions (particularly
the value of Ho) and those predicted,it 1s felt that the nonlinear
process described in Chapter V is responsible.

The reasons for the relatively low efficiency are felt to be the
following: First and foremost is the fact that the filling factor, f
of the ruby i1s most probably very small. This arises from the fact that

)

the ruby sample was placed in the cavity so as to allow for enough tuning
at K-band to satisfy the 2:1 resonant frequency requirements, and not
placed so as to attempt to maximize the filling factor. Since the output
pover depends on the square of the filling factor, a small value of that
quantity would severely reduce the power out. From the sample dimensions
and the cavity size the filling factor is at most 0.03 and probably near

0.01.
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The second reason for lower c°ficiency has to do with saturation.
Although the sample may not be oriented correctly relative to the funda-
mental and harmonic fields for optimum harmonic generation (small £ ),
it will still absorb the fundamental power and will tend to saturate.

It 18 felt that saturation had started to occur prior to achieving detec-
table harmonic power levels at input power levels = 200 watts., In a

more detailed experiment it would be necessary to know the cavity flelds,
in the presence of the ruby sample,quite precisely in order to optimize
the filling factor.

1t should be noted that the requirements on the orientation of the
cavity fields are more strict here than in the case of the maser. This
is a result of the fact that in a maser the pump signal saturates 1ts
transition followed by the amplifying effect at the signal transition.

As such, both frequencies need only independently see strong transitions
in the crystal, typically in the x-y plane. In the case of harmonic
generation, the re-radiation of 2w photons occurs aimultaneously with
the absorption of two photons at w , and hence the relative orientations
in space of the fundamental and harmonic cavity fields is critiecal.

Since the nonlinearity and hence the masgnitude of the harmcnic
generated depends strongly on the location of the middle level relative
to the midpoint between the outer levels, and this in turn, for a fixed
® , 1s dependent on the operating point (O , HO), the power out will be
a critical function of the operating point. Unfortunately the location
of the c-axis was not known to within 3o s0 no precise knowledge of the
operating point was avallable.

Taking into account the above factors, it 1s felt that a careful
optimization would result in several orders of magnitude lmprovement in
the efficiency.

We may explain the appearance of three operating points where
harmonic generation occurred from the following argument: If the expres-
sion for the harmonic power were written in general terms where we do
not assume that 2w = (E3
power would contain a general denominator of the form

- El)/h , then the expressions for output

(aw - 031) (w = 921) (o - 932) . This presents the possibility of three
points of resonant behavior, namely when 2w = Q31 y W= 921 )
w =0 , for fixed w . The dependence on angle and megnetic field

32
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of these three operating points is only approximately known and would
have to be inveatigated in detall experimentally. Qualitatively, however,
for wf2x = 9.5 kMc and @ ~ 90° , the resonance conditions 2m = 84
and o = 921 should be satisfied for magnetic fields differing only
slightly in value, while w = 932 will be satisfied for a much lower
value of Ho

the known data on ruby. The experimental data are again qualitatively in

. These predictions are a consequence of an analysis of

agreement with these predictions. Here, as in the determination of the
megnitude of the power output, a precise knowledge of Ei(O , H) is needed

for any measure of the quantitative agreement.

G. CONCLUSIONS

From the results of this experiment we can conclude that the predicted
nonllnear effect does, in fact, exist, but that 1ts magnitude appears
to be smaller than anticipated. An exact quantitative comparison was not
possible due to the large uncertainty in some of the parameters involved.
Such a quantitative experiment should be performed both to better check
the theory and to determine the feasibility of possible applications. In
such an experiment such things as temperature and concentration dependence
as well as the effect of the location of the center level should be
examined. In particular, the prediction that optimum harmonic generation
occurs when the levels are not equally spaced should prove an interesting
check of the theory.

Other experimental work along this line could involve the use of
different materials with larger zero-field splittings for use at higher
frequencies as well as the examination of materials with faster spin-
lattice relaxation times to reduce the effects of saturation. Considera-
tion of processes other than harmonic generation, such as mixing, should
aelso prove interesting.
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CHAPTER VITI
CONCLUSIONS AND RECOMMENDATIONS

The purpose of this research has been to study the phenomena of
nonlinear or multiple quantum effects and to discuss possible applications.
We have found that a quantum mechanical system with discrete energy levels
can behave in a nonlinear as well as in a linear manner. The nonlinear
effects occur as a result of interactions which involve more than a single
quantum of electromegnetic radistion, whereas the linear effect, used in
mesers, is a single quantum effect. These multiple quantum phenomena
then make it possible to use a suitable quentum system for nonlineear
applications.

A genersal discussion of multiple quantum phenomena and the mechanism
of indirect coupling responsible for the effect was presented in Chapter II.
Following this discussion, three specific applicaetions were considered:
harmonic generation in a two-level system; parsmetric effects in a two-
level system; harmonic generation in & three-level system. Although these
are admittedly simple quantum systems, being at best an approximation to
the real case, their solutions do yield insight into more complicated
systems. Further, in many cases only a few levels will really be of
importance in an interaction and the problem cen be simplified to a two-,
three- or perhaps e four-level problem soluble by the methods presented
here.

The general character of these phenomena differ from single quantum,
maser-like phenomena. In particular it is found thet population inversion
is not required for many of the phenomena and that the saturation effects '
are generally to be avolded. These requirements, along with the strong
dependence on the magnitude of the dipole moments involved, make: the
criteria for the choice of materials different than for maser applications.
This mey make possible the use of new materials and will require conslderable

materials research.
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The ultimate application of these principles will probably be in the
millimeter wave to opticeal region of the spectrum, where at present suitable
nonlinear materials are not known. Using the nonlinear effects discussed
here, mixing, modulation, demodulation and other applications should be
possible at these frequencies.

Because of the fact that the study of this fileld is relatively new,
little has been done. There then exists much work to do in the future.

In particular, more experimentation is needed in order to verify the
quaentitative aspects of the theory. Should these experimental results
appear as promising as the theory indicates, then many and various
applicetions can be conslidered. When this state is reached an intensive
study of materials will have to be made to find suitable ones for the
various desired applications.

In summary, this new field appears quite interesting scientifically,
both from the point of view of providing a better understanding of radiation
processes and from the application standpoint. Much research is needed,
however, before the ultimate feasibility of application is known.
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APPENRDIX A

THE DENSITY MATRIX

It is the purpose of this appendix to fami{llarize the reader with some
aspects of the density matrix, in particular its description of the inter-

action of radiation with matter.

No attempt will be made to prove the

relations stated; for those interested in proofs and further details,

references 67-71 may be consulted.
Let us suppose we have a series of possible states of the atom *1

which we may expand in terms of a complete set of kets

The expectation value of an operator

In terms of the kets

where

‘yi = Z ain In)

n

(@) = v lalvy)

|n) this may be written

‘el

). &y oy alalw

n,m

@,

"1
= *
§4 %n %m Q‘nm

n,m

Qp = (nlQm)
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Q 1in the state

[n)

. (a.1)

wi is defined as

(A.2)

»  (A3)

. (Al)



w If the atom may be in one of a group of states *i with a probability
‘E w where we have the obvious restriction
% 2 @, =1 , (A.5)
i doa
then the expectation value of the operator Q in the arbitrary state ¥
is
wlelvy = ), (@, , (6
i
where we have taken into account the statistical behavior of matter as
well as the intrinsic statistical nature of quantum mechanics, Eq. (A.3).
By substituting Eq. (A.3) in Eq. (A.6), we obtain
= *
(@) = Z Z W; 85p 84y Uy - (A7)
i n,m )
Define the density matrix p as n
_ *
Pun ~ >_, @ 84n Bim ’ (4.8)
i
and then
@ = Z Prn U - (a.9)
n,m
By performing the sum over n , we have
~
@= ) () (4.10)
n -~
= Tr (pQ) » (A1)
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which gives the prescription for finding the expectation value of an
observeable.

We shall state, without proof, two additional properties of the
density matrix which we shall use:

(a) Trp=1 ’
or
Z Pon = 1 H (A.12)
n
(®) Py = Pon . - (a.3)

The first relation states that the sum of the diagonal elements is unity.
If we should use the energy representation where our kets are the eigenkets
of :No , the unperturbed Hemiltonian, then the numbers Pon B8Y be
interpreted as occupation numbers of the various states, n , normalized
to a single molecule. In this representation it is easily seen that each
diagoné.l element is non-negative; this is true in general, however, for
any representation.

The second relation merely states that the density matrix is Hermitian.
This simplifies solving for the density matrix as it reduces by half the
number of off-diagonal elements to be found.

We should like to now find the time development of the density matrix.
Let us divide the Hemiltonian into three parts:

H =1io +H ey . (A.ab)

The first term is the Hamiltonian of the atom, including the possibilityl
of static magnetic fields, and is time-independent. The second term, H ’
shall represent the perturbation due to electromagnetic radiation. The
third term, V , represents the interaction between the atoms and the
lattice and between the atoms themselves and will gilve rise to spin-lattice
and spin-spin relaxation.
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By explicitly writing down the components of the density matrix,
taking their time derivatives, and using Schrddinger's equation, the
equation of motion for p can be shown to be

116 = [H,p] ,  (A.15)

where [H,D] is the commutator of these quantities. We shall now assume
f ve are in the energy representation,

& =E b s (A.16)

O)nm m nm

and shall for the time being neglect the intersction V 1in the Hamiltonian.

The equations then become

n=nmnm
5, = Z Bk Pien * P i) »  (a.17)
K
and
nfm: .
o, = (B - Eey v ) G -on M) o (aa28)
.., K

These equations suffer from the fact that they do not give the correct

equilibrium value for p 1in the limit H -0 . It is shown in texts
on the subject that in thermal equilibrium the density operator is given
by

exp (- MO/H)
p = . (A.19)
Tr exp(-:ﬂo/lﬂ')

From this expression we see that the off-diagonal elements are zero
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while the disgonal elements are given by

exp (- E /kT)
o= . (A.20)
- E: exp (- Em/kT)

m

From Eqs. (A.17) and (A.18) it is seen that if the system is perturbed
g from equilibrium and the perturbation is removed, then Pon will remain
; constant while pnm will oscillate sinusoidally with a frequency
0= (En - Em)/h which is not in agreement with (A.19). The reason for
¢ this is that the relaxation mechanisms which give rise to thermal
‘ equilibrium have been neglected. As the exact nature of the perturbation
V 1is not known, its effects are usually phenomenologicelly added via
longitudinal and transverse relaxation times, TiJ and 113 , respectively.
With the transverse relexation times added, the off-diasgonal equations

become

n#m:

. in _ e ‘
1hpm + (Em = En)pm + T pm - Z (‘an pm pnk :Hkm) s (A'Ql)
o K
vwhere to satisfy hermiticity we require Tnm = Tmn . By the insertion of

this relexation term, Pom is seen to decay to zero when H =0 » as
required by (A.19).

For the diasgonal equations we introduce the trsasition probability,
wij , defined as the probability per unit time that the system will make
a transition from state 1 to state J due to relaxation processes. The

diasgonel equations then become

m=n: \

Wo =148 /, (P ¥ien = Pon W)
k

o) By e - e ) . (a.22)
k

- 147 -



In the absence of radiation fields, d 5o » we demand Pon tend to its
equilibrium value p:n given by Eq. (A.l9). At equilibrium we have 6n n= 0
for all n , putting a condition on the relaxation terms

Z (p]ik'wkn - p:n wnk) =0 ,all n . (A.23)
k

It is then assumed that the sum vanishes term by term, (the principle of
detailed balence) giving
e

e
Py Wiep = Popy Wy =0 s 81l n, k . (a.ad)

We then define a relaxation time T nk = Tkn by

1k . (A.25)

g [
5 |50
’L

In words, these two forms of relexation times have the following interpre-
tation:

(a) The transverse relaxation time 7T gives the decay time of the

term pi,j which 1s a measure of the correliiion between states 1 and J
and 1s the usual T2 of paramasgnetic resonance terminology. It is propor-
tional to the inverse of the linewidth of the transition 1 - j

(b) The longitudinal relexation time T, 3 is a measure of the time
required for the transition 1 —» ) to thermalize with the lattice and is

the T, of paramsgnetic resonance.

1
We may mske a simplification of Eq. (A.22) if we assume all longitudinal
relexation times equal to Tl . In this case we have
o+ (o -p%)= )@ e -0 W) . (a26)
Tl nn nn nk " kn nk kn
k

Equations (A.21) and (A.22) constitute the density matrix formulation
of the interaction of rediation with matter. In principle, when solved,
they will give us all the information we need to analyze the problems

herein considered,
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APPENDIX B

RELATION BETWEEN THE DENSITY MATRIX EQUATIONS
OF MOTION AND THE RATE EQUATIONB

Consider an M-level quantum mechenicael system. The equations of
motion for this system in terms of the density matrix are

n=m:
M
14 = 18 Z (Poge Wim = Py ")
k=l
M
+ z M Prn - P %) (8.1)
k=l
n £ m:
M
mbnm + (Em - En) P * %ﬁ— Pom = Z (anpkm = Pox %) s (B.2)
nn k=l

where the matrices are taken with respect to the eigenkets of the unper-
turbed Hamiltonian, 310 , (energy representation). The quentity L
is the probability per unit time that the system will go from state k
to n due to relaxation mechanisms. The quantities Tom ™ Tun 2 the
transverse relaxation times which are related to the linewidth of a
Lorentzian line by Tnm = l/x A vnm , where A Y m is the full linewidth
at half intensity.

Let us assume that the applied perturbations vary sinusoidally in
time and that no more than one of these frequencies i1s near any allowed

transition. We may then write the perturbation in the form

’ 1‘.0 t ‘1‘» t
;‘unk'l‘nk:(e nk” | e nk) ’ (B.3)
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‘ (1)
vhere ‘”nk ~ nnk and

9 = ————— L] (B. h)
nk 1

Under these assumptions the salutions to (B.2) to first order in the
rerturbation are

m

unm (pmm - pnn) N )

pnm R s— N 1 . (B'b)
o (an - mmn’ § ———

Substituting (B.5) into (B.l) gives

N N ¥ ¥ 2Tk
pnn+z(pnnwnk-pkkwkn)'z 2 ("1:k"’nn)1+72(Q o )
k=l k=l nk

(B.6)

By defining the quantities

L 2Tk
r = b ) ’ (B'T)
nk e 14710 (0, - )2
nk ‘"'nk nk

the equations for the diagonal components become

M
8
Pn* Z(annl W ™ P W) * >: Tk Popy = Pr) =0 »  (B.8)
k=l k=1

vhere the quantities T nk represént the transition probabilities due to
the applied radiation fields.

(1) . .
By convention we have an = an and o nk = O
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If we consider a system containing N identical independent
systems, then the population density or the number of systems in the
level 1 is givern by

ni = Npii . (3-9)

Multiplying (B.8) by N end using (B.9) gives

M M
1'11 + 2 (n‘i LAVER % "ki) + Z L (ni - nk) =0 , (B.10)
ksl k=1

vhich is recognized as the familiar rate equation.2
Thus the rate equations are equivalent to the diagonal equations of
the density matrix.
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APPENDIX C
4
DERIVATION OF JAYNES' NEOCLASSICAL EQUATIONS FROM THE DENSITY MATRIX

In showing the equivalence between Jaynes' semiclassical equations6
and formulation in terms of the density matrix we shall begin with the
equations of motion for & two-level quantum system neglecting the effects
of relexation terms. Let the energy levels be as shown in Fig. C.1,

E,

1
Q=3 (E2 - El)
B

FIG. C.l-<Energy level diagram for a two-level system.
and take the form of the Hamiltonian to be
H_ =H_=- p E ’
H. =¥H_=0 . (c.1)

In the energy representation the equations of motion become

uF,
A

922 =- %Ei (912 - 921) (,C'Zb)
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and:
o= 18Py, = - % (ppp = £y7) (c.2c)
boy * 100y = - B2 (o) - 0y - (c.ad)
The expectation value of the dipole moment M 1is given by
(c.3)

M = <“op> = H (912 + le) H

where p = const = Hip = My » The energy of the unperturbed Hemiltonien

relative to e zero of energy lying midway between the levels is denoted by
W and 1is given by
= =31 -
W= @) =300 (py - pyp) . (c.k)

The first derivatives of these quantities are found to be

M=u(f5+ 6p)

19 u (pyp - Py) ’ (c.5)

and

— l . - .
510 (fyp - £yq)

=
I

1EQqp (p12 - p2l) ’ (C'6)

vhere we have used the equations of motion (C.2) to eliminate the time
derivatives. Froam (C.5) end (C.6) we msy derive the first of Jaynes'

equations:

(c.7)

=
[
=1
=
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Teking the time derivative of (C.5), we have

M=1au(p, - by)

[
[ ]
te)
k
~
©
'—l
n
+
kel
n
'_J
N
+
N
LY
\-/n)
ol S
&
Py
©
H
'_l
©
n
N
o
-

and by substituting from (C.3) and (C.4) we obtein

M+QEM=-(§§)ZWE . (c.8)
These two equetions, (C.7) and (C.8), constitute two of Jaynes' neoclassical
equations. The first, (C.7), states that the rate of increase in the
energy of the quentum system, ﬁ s 1s equal to the product of a field,
E , end a current ﬁ . The second, (C.8), describes the time develop-
ment of the dipole moment, M , which is seen to be the equation of an
undamped harmonic oscillator driven by the field E through a coupling
constant proportional to W . These form a set of coupled nonlinear
differential equations and have been proposed by Jaynes as a method of
studying the interaction of radiation with matter.

The third equation is simply a description of how the resultant
dipole moment M generates the fields E and may be written in meny
forms. The one used in this paper is simply to define a complex cavity
susceptibility (Xé = Xé - 1Xé) and then to relate the dipole moment
M to the field E by

1
E = i:M . (c.9)

We may phenomenologically add relaxation terms to (C.7) and (C.8) in
the following way. First consider (C.7) which describes the energy of
the system, and let the characteristic time in which it can exchange
energy with the "lsttice," or thermalize, be T, - Then in the absence
of a perturbation, E = 0 , the system will return to thermel equilibrium
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if ve add a term (W - H‘)/Tl , giving

=EM . (c.10)

The equation for M , (£.8), may be altered to account for relaxation
mechanisms if we 8dd & term 2ﬁ/T2 in the form of a demping term. This
predicts a decay time of T2 for the dipole moment. The modified equation
is

ﬁ+iia+ngn=-(-2§)zzw . (c.11)

If we add the same terms to the density matrix we get the modified
equations including relaxation

(o1, - 057) WE
Byy * i it T (ppy - P1) (c.12a)

Tl in

: 1 = . BE -
Pra= 18P+ P1p”™ "y (pgp - Pyy)  »  (C.12)

where we have included only one diagonal and one off-disgonal equation.
From these equations we find the following derived equations

. W-W

. 1
W+ -=EM + = M) (c.13)
T, T,

- | e
M+—M+ 0" +—5|M=-|—]EW . (C.14)
T, T, (n

Upon comparing these with (C.10) and (C.11), we see that they differ
slightly ir. that they have additional terms proportional to l/'l‘2 and
(l/T2)2 . This is not unexpected since the terms were added phenomenologically
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and cannot be expected to be valld when their effect is large. If T2
is not too small, we see that the additional terms are negligible since
the netural frequencies  ~ 10 era T, is typically 1079 . By
neglecting small quantities we see that (C.13) and (C.14) are the same
as (C.10) and (C.11).

In studying the interaction of radiastion with a two-level system
we can either use the density metrix equations (C.12) or Jaynes' equations
with relaxation added (C.10) and (C.11).

2
It should also be mentioned in passing that Feynman, et al.,7

have
shown that for the two-level system one can write the equations of motion

in general es:

L=oxr s (c.15)
where
r= (rl » To s r3) , (c.16)
w = (wl ) Wy w3) , (c.17)
and
T} S P12t Py
r, = i(py - Pyp) (c.18)
T3 = Pop = Py1 ’
and
® = (v12 + Vel,/h
w, = i(v21 - Vlg)/h (c.19)
m3 =0 .

No use will be specifically made of these equations in the form (c.15);

they are merely mentioned for completeness.
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AFPPENDIX D

DERIVATION OF THE ABSORPTION COEFFICIENT

If we have an electromegnetic field propesgating with the velocity
c , the energy flow is given by the Poynting vector

. C
S=1-ExH , (p.1)

which for E perpendicular to g is

2

_.c
ISl EI-E (D.2)
Performing a time averege results in

- 2 2

IS = g E (ergs/cn®) , (D.3)

where we have assumed E = Eo cos wt .
If we have a sample which has a resonance at this frequency, the

density of power ebsorbed in the absence of saturation is

e 2. 2
wNA T2 o Eo

P= (ergs/cmB) . (D.4)

Considering a volume 1 cm square and dz long, the power absorbed is

RINE e B2

ap = 9 3z (ergs) . (D.5)

an
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The absorption coefficient is defig’ |
&
. 4B
dz

Y= , (D.6)
P

as :"’i

where ~dP/dz 1s the power sbsorbed per unit length. Using (D.3) and (D.5)
in (D.6) gives 1

o bx N& T, u2
Yy = - —— s (D.7)
¢ ol
or
1
7= % Q ’ (D.8)
S

where Qs is the sample Q defined in Chapter III.

(Dgee cordy, et al.,’® Eas. (4.10), (4.14), and (¥.158).
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